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1 Introduction

The modern version of golf dates back to 15th century Scotland [1] and in 2020 had a
player-ship of 37 million in America alone [2]. While traditionally associated with an
older demographic, young adults (18-34 years old) are one of the sports largest customer
age segments. The sport continues to grow steadily—according to the National Golf
Foundation, 17 million Americans who didn’t play golf in 2020 are “very interested” in
playing on a golf course [2]. After a long hiatus, golf has now returned to the Olympics,
being played by over 40 countries at the 2016 Rio and 2020 Tokyo Olympic games [3, 4].
As of 2019, the USA was home to 43% of the worlds golf courses, followed by Japan and
Canada with 8% and 7% respectively [5].

Aside from its many golf courses and large player-base, the USA is home to some of
the most important and well-known tournaments in golf. With global recognition and
winners receiving many millions of dollars, the PGA TOUR is likely the most important
tournament in golf. It is the goal of many golfers to be invited to play on the PGA TOUR,
and for young players obtaining a golf scholarship to an American college is a highly
promising start to a career in golf.

Like many sports, the game of golf has been subject to a data-driven revolution in recent
years. Detailed analytics and metrics that were once only accessible by professionals are
now becoming available for amateurs to hone their game. Platforms now exist where
any golfer can input their shot data to receive information on areas of opportunity and
targeted training. Given the parity of data collection between professional and amateur
players, golfers of all abilities are able to benefit from shared analytics. With one such
online sports analytics platform as a client, the broad problem statement of this project
was to: “Use new and existing data to improve analytics and insight on the platform and
beyond by providing novel visualisations, recommendations, and benchmarks”.

This was broken down into three major areas of analysis:

• PCA: improving the depth and visualisation of player metrics and summaries by
incorporating a large number of variables with Principal Component Analysis.

• Clustering : adjusting for player ability before grouping golfers by play style, and
recommending professional players to amateurs with similar play styles.

• Course Difficulty : adjusting for a course’s difficulty for unbiased comparisons and to
develop a new US college golfer benchmark for players to compare their performance
against.

This report introduces relevant background concepts, before separating into three chapters
for each of the major areas of analysis. These chapters follow a structure of data and
pre-processing, methodology, results, and discussion. This project was completed over one
semester at the University of Auckland, in collaboration with Luma Analytics and as part
of the Master of Data Science programme. All analysis was performed in R on standard
laptop hardware.
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2 Background

This chapter introduces relevant concepts and terminology in golf before covering the
technical background of this report and briefly commenting on related work.

2.1 Background on Golf

Golf is a sport in which players compete at hitting a ball into a series of holes, forming a
course. Each hole begins with a teeing ground, ends with a putting green, and contains
various terrain such as long grass and sand traps, as well as hazards such as water and
rocks. The layout and arrangement of each hole on a course are unique but has a set par
number of strokes of which a skilled golfer would need to complete the hole. The typical
game of golf consists of 18 holes, and the winner is determined by whom completes the
course in as few strokes as possible. This results in the counter-intuitive notion of a low
score denoting a positive performance.

Golf involves various types of strokes, and a golfer carries clubs for each circumstance.
Typically the first stroke is intended for hitting the ball a large distance and is taken with
a long-shafted and large-headed driver club. Once the ball is on the putting green, shorter
and lighter clubs are used for hitting the ball the remaining short distance. Typically,
a golfer’s game is broken into the four aspects: Driving, Long game, Short game, and
Putting. Long-game shots are those taken from a distance over 100 yards (including the
initial shot), and Short game includes any shot under 100 yards (including putts).

The winner of a round of golf is determined by the lowest total number of strokes (or
equivalently the difference between the final number of strokes and the par for the course,
score-to-par). However, less clear are the factors that contributed to the victory. For
example, there was significant debate around Tiger Woods during his prime; whether
his low scores were due to “superior putting, wedge play around the greens, driving, or
some other factor or combination of factors” [6]. Furthermore, scoring at a certain level
relative to par scores can have a wildly different meaning depending on the difficulties of
the courses being played.

The Strokes Gained (SG) metric [7] has become widely adopted as a meaningful and
interpretable way of assessing a golfer’s performance. Strokes gained works by estimating
a function for the number of strokes a PGA TOUR golfer would take to complete a hole
given the distance of the ball from the hole and the condition of the current terrain (fairway,
rough, green, sand, or recovery). The difference between the value of this function before
and after the golfer takes the shot thereby quantifies how good the shot was relative to
other PGA TOUR golfers. For example, from a distance of 16 feet on the putting green, a
PGA TOUR golfer will sink the ball in one putt 20% of the time and in two putts 80% of
the time [6]. The expected number of strokes needed to complete the hole from 16 feet is
therefore 1.8. In practice, a player making this putt who sinks the ball in one putt has
gained 0.8 strokes, and a player who sinks it in two strokes has lost 0.2 strokes.

By calculating the strokes gained metric over each of the categories of stroke (Driving,
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Chapter 2. Background

Long game, Short game, Putting), a golfer’s performance in each of these categories as
well as on a per-shot basis can be directly compared. To return to the earlier Tiger Woods
example, Broadie [6] showed that his scoring advantage between 2003-2010 was 3.20 strokes
per round better than average. Of this 3.20, Tiger’s Long game shots accounted for 2.08
strokes. While he still excelled at putting, most of his score advantage came from shots
beyond 100 yards from the hole.

Strokes gained is also meaningful on a per-shot basis. Consider two golfers A and B on a
par-3 course:

• Golfer A hits a phenomenal drive leaving the ball within a few yards of the hole,
and putts it in for a total of two strokes. The strokes gained for the drive will be
large and positive, while the strokes gained for the putt will be close to zero as it
was an easy shot to make.

• Golfer B hits an awful drive but manages to then sink the ball with a lucky shot for
a total of two strokes. The strokes gained for the drive will be negative, while the
strokes gained for the second shot will be large and positive.

The golfers have both scored one under par (known in golf as a birdie), but the strokes
gained metric provides information on where the gains were made.

The strokes gained metric attempts to address a long-standing problem in golf: because
every course is different, it is difficult to compare a player’s performance between different
courses. Popular courses usually come with a course rating which is an estimate of the
average number of strokes a ”scratch“ golfer (one that shoots at or better than par) would
require to complete the course [8]. This is distinct from the par score for the course–for
example, a par-72 course with a course rating of 74 would be considered difficult, while a
course rating of 68 would indicate the course to be easy. In cases where a strokes gained
metric is not available, the course rating can help when comparing scores-to-par.

2.2 Technical Background

This section discusses the concepts and background of the technical aspects of this report.

Principal Component Analysis

Especially at the elite level, golf is rich in data. Datasets such as the PGA TOUR have
hundreds of variables available, making Principal Component Analysis (PCA) a good
starting point. PCA is often useful in exploratory data analysis or predictive modelling
but is worth consideration whenever one has a large number of variables and wishes to
understand the relationships between them.

PCA is the process of computing a series of vector ”components”, where each component:
1) minimises the squared distance from the data points to the line and 2) is orthogonal
to every previous component. By construction, the components represent independent
dimensions in the data that retain as much information (variance) as possible. Highly
correlated variables tend to collapse or “load” onto the same principal component, with
unrelated variables loading onto different components. The result is that an analyst can
choose to consider only the first few components, and in doing so, can achieve a significant
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Chapter 2. Background

dimensionality reduction. That is, in a dataset with many correlated variables, PCA
allows one to represent as much of the original variance in the data as possible by using a
reduced number of “summarising” variables. In most cases, using only the first one or two
PCs (referred to as PC1 and PC2 respectively) is sufficient to explain a large amount of
variation while remaining within the realm of what is possible for humans to visualise and
conceive.

Consider an observation vector x, where each element xi represents the measured value of
the ith variable. Having computed a PCA and stored the loading coefficients cij for the
jth principal component, the output or “score” PCj of the jth principal component upon
applying the PCA to x is computed as:

PCj(x) =
∑
i

xicij

In this way, PCA acts as both a summary and a data compression tool. A dataset of N
observations requires storing N ×M elements where i = 1, ...,M . In contrast, by storing
a P ×M matrix of loading coefficients where j = 1, ..., P and P << M , the data can
instead be summarised with just an additional N × P matrix. Storing the results of the
PCA means that the same method of summarisation and compression can be used on new
data directly.

In practice, PCA involves computing the eigenvectors of the data’s covariance matrix,
which can be done efficiently using singular value decomposition. It is often beneficial to
normalise the input variables, for example, to have a mean of 0 and a standard deviation
of 1. This maps every variable onto a similar range and allows linear combination without
biasing towards numerically larger variables. For example, without normalisation, a
variable like driving distance in yards could bias the results when other variables exist on
different scales such as percentages or proportions.

Linear Regression

Linear regression is an approach for linearly modelling the relationship between a scalar
response variable and one or many explanatory variables. For a dataset with i = 1, ..., n
observations of a response variable y and j = 1, ..., p explanatory variables x, the formula
for a linear regression is:

yi = β0 + β1xi1 + ...+ βpxip + εi

Where εi is random noise. Removing εi gives an equation for ȳ, the fitted value of y given
the explanatory variables. Accurate modelling of y depends on several assumptions such
as a linear relationship between y and x and constant variance. However, even without
rigorous satisfaction of these assumptions, some basic inferences can still be made.

Linear models can be fitted through various means, most commonly using least squares
or maximum likelihood estimation. Once a model has been fitted (and if the purpose of
the model is prediction), the most pertinent question is often “how well does the model
fit?”. The coefficient of determination, or R2, is the proportion of variation in the response
variable explained by the explanatory variables. With ȳ as the mean of y and the fitted
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Chapter 2. Background

values from the model ŷ, the R2 is defined from the following:

SSresid =
∑
i

(yi − ŷi)2

SStotal =
∑
i

(yi − ȳi)2

R2 = 1− SSresid

SStotal

With 0 ≤ R2 ≤ 1, a large R2 means that relative to the total variation in the data SStotal,
the variation of the fitted values about the observed values of y is small and the model fits
well.

K-Means Clustering

K-Means clustering [9] is a classical and widely-used method for partitioning n observations
into K clusters. This is done in such a way that the within-cluster variation is minimised,
based on a user-specified similarity metric (such as Euclidean distance). The näıve
algorithm is simple: start by randomly assigning each observation to a cluster and compute
the cluster centroids as the mean of every observation within that cluster. Then: iteratively
compute the distance between each observation and each cluster, assign observations to the
closest cluster, and recompute the cluster centroids until convergence. Given the cluster
centroids, unseen data can be classified into a cluster by choosing the nearest centroid. If
the number of clusters K = 1, this is equivalent to the also popular and similarly named
k-Nearest-Neighbour algorithm [10].

When determining the distance from one point to the next, different metrics are possible
that result in different clustering arrangements. Consider two points a and b in an
n-dimensional space. Some common distance metrics are:

Taxicab Distance (L1-norm) =
∑
i

|ai − bi|

Euclidean Distance (L2-norm) =

√∑
i

(ai − bi)2

L∞-norm = max
i
|ai − bi|

The Euclidean distance is a popular choice as it progressively penalises more distant values.
However, the best choice of metric can depend on the specific application.

Because of its simplicity and efficacy, K-Means is popular for exploratory data analysis
and gaining an intuition of the data structure. Other uses include image compression or as
part of a pipeline for “pre-classifying” observations before more complex methods exploit
the differences in characteristics between the clusters.

There are times when “K” is known in advance. However, often this is not the case,
and the analyst may need to inspect the results of applying different Ks to determine
an appropriate value. Silhouettes [11] are a formal mathematical measure of how good
a clustering is and can be used to determine a good value for K. For a distance metric
d(i, j) measuring the distance between two points i and j, the silhouette width s(i) of
point i in cluster Ci is computed from:
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Chapter 2. Background

• cohesion(i): the mean distance (using from distance metric ) from i to every other
point in Ci. Formally:

cohesion(i) =
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j)

The cohesion can be interpreted as how well the point i belongs to its own cluster.

• separation(i): the minimum of the mean distances from i to every point in every
other cluster Ck 6= Ci. The Ck that minimises is termed the neighbouring cluster
and is the next best fitting cluster for the point i. Formally:

separation(i) = min
k 6=i

1

Ck

∑
j∈Ck

d(i, j)

The separation can be interpreted as how well the point i belongs to the neighbouring
cluster.

The silhouette width s(i) is now defined as:

s(i) =


1− cohesion(i)/separation(i), if cohesion(i) < separation(i)

0, if cohesion(i) = separation(i)

separation(i)/cohesion(i)− 1, if cohesion(i) > separation(i)

The silhouette width then lies between −1 ≤ s(i) ≤ 1, with values close to 1 for a point
i indicating high cohesion and good fit to the current cluster Ci, and values close to -1
indicating point i would be better suited to the neighbouring cluster. A value near 0
means it it is near the boundary between the two choices of cluster.

The mean of s(i) over all points in a cluster measures how tightly grouped the cluster
is. Thus the mean s(i) over the entire dataset measures how appropriately the data have
been clustered and can be used to compare the clustering for different values of K. A poor
clustering configuration with too few or too many clusters can be identified by many low
or negative value points.

Web Scraping

The web is home to a wealth of information unprecedented in all of human existence. Web
scraping refers to the automated extraction of information from web pages. This can
include text, images, and metadata about what is displayed on page.

Visiting a page on the web involves the page’s HTML source code being rendered by a web
browser (e.g. Chrome, Firefox, Safari). HTML code contains all the information needed
to display the page, including text and hyperlinks to images and videos. Elements in an
HTML document are nested in a tree structure and have broad classes such as heading,
table, link, image. This means that tools such as xpath and xquery can exploit and query
the structure of the HTML document to extract desired information.

A static web page is one where all content on the page is loaded together, and no changes
are made to the HTML source code. The general workflow for scraping a static web page
is to:
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Chapter 2. Background

1. Define the target URL of a web page.

2. Retrieve the page’s source code (this can be done programmatically or within a web
browser).

3. Inspect the source code to gain an intuition around how the information of interest
is structured.

4. Based on the document structure, develop a query to extract the information of
interest from the source code.

However, this procedure may fail for dynamic web pages: e.g. a page that dynamically
retrieves and displays search results without overtly exposing any URL endpoint for
accessing the search results directly. This type of web page is designed to be interacted
with by a human user rather than a machine. For these cases, tools have been developed
to simulate human interaction. The RSelenium [12] package offers programmatic control
over a web browser–allowing things to be clicked and keystrokes to be registered in the
same way as if it were a human user interacting with the browser. This is frequently
paired with a headless version of a chosen web browser, as rendering the graphical display
is unnecessary for the machine’s interaction. Docker [13] containers are a popular method
of running such programs in an isolated environment.

The HTML source can still be retrieved at any time to guide the program in its interaction
or to extract the desired information directly. Some websites, however, require the user to
complete a captcha upon submitting multiple requests from the same IP address within
a short time-frame. This is explicitly designed to stop machines overloading the server,
and scraping information from pages with such security measures is outside this project’s
scope.

2.3 Related Work

Academic literature on golf comes predominantly from areas such as sports psychology
([14], [15]), physiology ([16], [17]), sociology ([18], [19]), or economics and the environment
([20], [21], [22]). Journals such as the Journal of Sports Analytics [23] and Journal of
Quantitative Analysis in Sports [24] are examples of relevant academic publications to this
work. However, overall, the kind of data and analysis conducted in this work is far more
prevalent in an industry than an academic context and this work remains highly novel.

A literature survey returns some tangentially related analyses in the field of golf analytics.
For example, Yousefi and Swartz [25] develop a new metric to assess putting performance.
Chan et al. [26] investigate how to better allocate player handicap scores. Drappi and
Co Ting Keh [27] predict golf scores at the per-shot level. Regardless, Broadie 2012’s [6]
strokes gained concept was the main direct influence on this work.
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3 Principal Component Analysis

The strokes gained (SG) metric offers a powerful scalar summary of a player’s performance
in each golfing aspect, but unfortunately, data is not always available or is difficult to
calculate. Principal Component Analysis (PCA) offers the ability to condense multiple
variables into a single metric that potentially contains the same or more explanatory power
than the SG metric. This chapter covers the technical details and methodology of the
Principal Component Analysis, from data acquisition to analysis to results.

3.1 Dataset and Pre-processing

One of the main sources of data for this project came from the PGA TOUR. A small
amount of data on amateur players was also available with many of the same variables.

PGA TOUR Dataset

Raw Data Processed Data
% Missing 84 0

# of Variables 1497 56
# of Golfers 1451 218

Table 3.1: PGA Tour dataset statistics.

The PGA TOUR is the main profes-
sional golf tour played by men in the
United States of America. A similar
tour exists for women (LPGA) but un-
fortunately has less data and variables
available, thus this project was limited
to men’s PGA TOUR data. Prior to
the beginning of this project, a dataset
of player statistics had been scraped directly from the PGA TOUR website over the 2019
season (October 2018 – August 2019). This was available as a ∼900MB CSV file.

A wide range of metrics was available for each player, from standard ones like strokes
gained and scores-to-par to less useful ones like tournament winnings. A full list of
variables with explanations is available in Appendix 8.1. Table 3.1 summarises the
number of players, variables (excluding the player name), and missing values before and
after pre-processing. The large data file size was due to the scraper having been run
periodically and continuously appending player statistics to the file. Pre-processing was
necessary to extract the most recently updated value for each player and each of that
player’s available metrics. The dataset was in “long” format: each row had one column for
the metric and one for the value. This needed conversion into “wide” format where each
row represented a singular observation (in this case, player) with each collected metric
having its own column.

There were also a significant amount of missing values and the phenomenon of players who
were only occasionally invited to play on the PGA TOUR for whom data had not been
so thoroughly collected. This was a problem as the PCA was unable to handle missing
values. A complete case analysis was taken, ensuring a high-quality dataset of professional
players.

While the PGA TOUR data offered metrics tracking the average performance of players,
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Chapter 3. Principal Component Analysis

the outcome of a single round of golf can still be highly variable. The Official World Golf
Rankings (OWGR) [28] were used to augment the dataset with the real-world performance
of the player at the end of 2020. Rankings at the end of 2019 would have likely been
more consistent with the PGA TOUR dataset but, unfortunately, were not easily available.
Figure 3.1 displays the distribution of the OWGR rank of players that were dropped from
the dataset due to missing data. The assumption was made in taking the complete-case
analysis that no important players were dropped, but this shows that most dropped players
were at a lower rank, and many were not on the OWGR rankings at all (coded as rank
2000).

Figure 3.1: Distribution of rank of players dropped from analysis.
Note: Players with no OWGR ranking coded as 2000.

The dataset was further augmented with player headshots scraped from the PGA TOUR
website [29] to be displayed on the player visualisations. The website provided a single
static page containing a link to the personal profile of every player on the tour. Each
player’s ID was determined by retrieving the page’s HTML source and extracting every
link element with the class of “player-link”. When generating a visualisation for a certain
player of interest, their names could be matched against the links dataset to retrieve
their player ID. From there, a standard URL was formatted with the player’s ID and the
resulting image file downloaded and rendered directly on the plot.

Amateur Dataset

A golf instruction company in New Zealand maintains an online platform, which allows
amateur and professional golfers alike to record their stats and receive tailored feedback
and training plans to help improve their play. Unfortunately, due to Covid-19 [30], amateur
data was not able to be collected from this platform at a large scale. Data for a handful
of amateurs were manually collected from the website and used to offer a proof of concept
of what might be possible with a larger cohort of amateur data.

While this dataset resembled the PGA TOUR data in that many of the same variables
were present in both, some manual work was still involved in connecting the two. A JSON
file was created to store a mapping of column names between the two datasets and the
corresponding golfing aspect of each column. The columns needed only to be renamed
and assigned a category for the amateur data to be integrated into the existing pipelines
built for the PGA TOUR data. The columns all measured the same qualities as in the
PGA TOUR data, except for the strokes gained (SG) variables; where the PGA TOUR
SG variables were relative to other PGA TOUR players, the SG variables in the amateur
dataset were relative to “scratch” players.
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Chapter 3. Principal Component Analysis

3.2 Methodology

Traditionally the game of golf is broken down into four key aspects: Driving, Long-game,
Short-game, and Putting. With a large number of variables in the PGA TOUR dataset, it
was desirable to condense these into summaries of a golfer’s overall performance in each of
these aspects. Principle Component Analysis (PCA) using R’s inbuilt prcomp function
provided a powerful means of reducing the dimensionality of the dataset and obtaining
said summaries. This function took a dataset as input and returned a sequence of principal
components (PCs) as output, decreasing in order of explanatory power. The first principal
component (PC1) could then be extracted and used as a scalar summary, or the first two
taken to generate a plot.

Variable Selection and Categorisation

Variables first had to be assigned to one of the categories of golf. This was done based
on a variable list from a previous project on developing benchmark statistics. Variable
names were matched against the ones in the PGA TOUR dataset and associated with
one of the different aspects of golf. A similar process was undertaken with the amateur
dataset using the variables in the processed PGA TOUR dataset. Some variables were
useful for describing a golfer’s overall game but did not apply to a particular aspect of
golf and were saved under a “General” category. The final set of variables is described in
Table 3.2 with examples of variables in each category. A comprehensive list is available
in Appendix 8.1 with descriptions and explanations of the variables.

# of Variables Examples
General 10 Avg. Stroke Differential, Avg. Score on Par 3/4/5
Driving 4 Avg. Driving Dist., Driving Accuracy (%)
Long-game 12 Proximity to Hole after Stroke from 125-150 yards
Short-game 12 Sand Save (%), Proximity to Hole from 50-75 yards
Putting 18 One-putt (%), Avg. Dist. of Putts
Total 56

Table 3.2: Variable categories with examples.

Due to the small number of variables in Driving and their semantic similarity, combining
the Driving and Long-game aspects was considered. However, the resulting PCA had
differences in variable loading that were sufficient to warrant the separation of the two
aspects. Golf is typically separated into the four distinct aspects and for the sake of
consistency and familiarity, they were left separate.

Importance of Strokes Gained

Because the SG variables will not always be available and is often difficult to calculate
for amateur players, an investigation was performed into what can be done even in the
absence of SG data. This consisted of:

• Fitting a linear regression to the non-SG variables to predict the SG variable and
measuring the R2 value. The R2 measures the proportion of variation in the SG
variable explained by the rest of the variables. If the R2 is high, the non-SG variables
can accurately predict the SG variable. A convenient side-effect is that the coefficients
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of the linear model can also be used in place of the loading coefficients of the PCA
to generate an alternate summary.

• Performing the PCA with and without the SG variables included and comparing the
percentage of variation explained by the first principal component.

• Measuring the Pearson correlation of the first two principal components of a PCA
with their respective SG variable. This measured the extent to which PC1 or PC2
was measuring the same thing as the SG variable. For example, a large correlation
would imply that a good golfer would be deemed good by both the SG and the PC
variable.

Output Summaries

After executing the PCA to summarise each golfing aspect, the summaries were normalised
to each have mean 0 and standard deviation 1. This allowed for direct comparison (in
terms of a player’s deviation from the mean) between the summaries. PCA was also applied
to all variables simultaneously (including ones in the “General” category) for an overall
summary of a player’s performance. As each aspect had a different number of variables
assigned, there was a risk of bias towards players who were stronger in the aspects with
more variables. By overriding the default column-by-column scaling behaviour of prcomp,
a custom aspect-by-aspect scaling was implemented. The variables were normalised as
usual but then multiplied by the reciprocal of the number of variables in that aspect.
Aspects with fewer variables were therefore allowed to vary more, resulting in variables
that were more valuable in the overall PCA.

Visualisation

The results of the PCA were visualised with interactive linked plots using the plotly [31]
and ggplot [32] libraries. For each of the golfing aspects and the overall summary with
every variable included, the first principal component was plotted against the second.
With too many points to label individually, hovering over a point in the plot displayed an
annotation with the player’s name instead. The plots were linked together such that when
the user clicked on the player in one of the plots, that player was automatically highlighted
in every other plot. Alternatively, the user could query the player’s name in the search
box to the same effect. This allowed the user to very quickly see where that player sat
amongst the cohort of PGA golfers, both overall and broken down by golfing aspect.

The sign of a PC can be arbitrary, and a rigorous interpretation requires understanding how
the underlying variables have contributed to the output of the PCA. To aid in interpreting
the summary plots, supplementary plots were generated that visualised the loading of
each variable onto PC1 and PC2 of each aspect. By hovering over each bar, the loading
coefficient and name of the variable was displayed, allowing the user to interactively explore
how each variable was associated with PC1 and PC2. These plots also aided in detecting if
a sign change was necessary; PC1 of the Driving aspect had to be negated in the summary
plots to give its axis the direction of conventional interpretation.

For visualising the overall skill profile of a player, radar charts from the fmsb package were
used. These produced plots where the multiple aspects of a player’s game were visualised
on the same plot along with their headshot from the PGA website. The axis limits were
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the entire range of values for the cohort of PGA TOUR players to visualise how the player
is performing relative to their cohort.

Amateur Data

Once amateur data was available, the PCAs trained on the PGA TOUR dataset were used
to generate predictions for the amateur players. The amateur players were then included
on the same plots as the professional players for comparison. Note that five columns
were missing from the amateur data and these were filled with zeros. Zero was used as a
replacement value to minimise the bias of the missingness on the PCA.

3.3 Results

The results of the PCA analysis examine the viability of the PC summaries as an alternative
to the SG variables. An interactive HTML document containing the full range of plots in
this section is hosted on GitHub1.

PCA as a replacement for SG

Computing Strokes Gained (SG) data requires the player to know the distance from the
hole and condition of the course at each stroke. This data is not always available and can
be difficult to calculate. PCA summaries computed on the non-SG variables were used to
try to match the explanatory power of the SG variables and obtain a similarly powerful
summary metric of performance.

Figure 3.2a shows the Pearson correlation of PC1 and PC2 with each of the SG variables.
In general, each PC1 is reasonably correlated with its respective SG variable, confirming
that the PC1s can be interpreted similarly to how a SG variable would be interpreted
with respect to the player’s ability. For example, a high correlation in this case means
that a good putter with a large and positive strokes gained in putting is very likely to
have a large and positive value in PC1 for Putting. However, the one variable that does
not follow this trend is Driving. The correlation of PC1 with the Driving strokes gained is
lower than the rest of the variables, and PC2 is also negatively correlated with the strokes
gained for Driving. Ideally, and what is seen with the other aspects, is that PC1 is able
to combine all the useful variables to create a summary that is correlated with the SG
variable. With Driving, the variables contained distinct information—thus no meaningful
combination was possible.

Table 3.2b displays the R2 values obtained when fitting a linear regression model with
the SG variable as the response and the non-SG variables as the p explanatory variables for
each golfing aspect. The R2 values measure how much of the variation in the SG variable
can be explained by the non-SG variables, and shows that Putting can be predicted with
very high accuracy, Driving and Long game with reasonable accuracy, and Short game
with poor accuracy. Despite only having three explanatory variables, the SG for Driving
can be predicted surprisingly well (R2 = 0.72). When this is interpreted together with
Figure 3.2a, the conclusion is that despite being capable of reasonably reconstructing
the SG variable, the PCA has found that more variance was able to explained through the
construction of something different.

1https://github.com/OptimusPrinceps/Golf-Masters/blob/main/output/PCA.html
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(a) Pearson Correlation of PC1 and PC2 with the cor-
responding SG variable.

p R2

Driving 4 0.72
Long game 12 0.70
Short game 12 0.53
Putting 18 0.95

(b) Number of explanatory
variables p and R2 values for
linear models fitted to each
SG variable

Figure 3.2: Investigation of PC variables as alternatives to SG.

Figure 8.1 in Appendix 8.2 shows the amount of variation explained in the data by each
PC1 with and without the SG variable included. The results are consistent with Figure
3.2 in that PC1 in each aspect performs as an adequate summary of the data. The PC1
for Driving in particular explains a large amount of the variance in the data. The following
section further examines the Driving PCA through an example.

Case Study: Rory McIlroy and Cameron Champ

Figure 3.3 visually compares the PC against the SG variables for two PGA TOUR
players Rory McIlroy and Cameron Champ. For each golfing aspect, the PCA was run on
all available non-SG variables, and PC1 plotted as the summarising variable. For each
summarising variable type (SG or PC), the axes are scaled based on the range of values in
the data. For example, Cameron Champ’s Driving statistic was the highest in the dataset
when using the PC variables as a summary. Using the SG variables as a summary, his
Driving statistic was still relatively good, but not the best. Rory was the opposite: he had
the best Driving statistic in SG terms and was close to the best in PC terms. Only two
player’s plots are given here. However, many more were inspected, and all were largely
similar between the SG and PC variables, with the Driving variable being the primary
source of discrepancy.

Inspecting Table 3.3 gives an even closer look into the discrepancy between Cameron
and Rory’s Driving statistics. Note that the values for the variables given (e.g. an average
Driving Distance for Cameron Champ of 317.9 Yards) were the raw values from the dataset
prior to centering and scaling to remove the effect of having different units and scales.
After centering and scaling, the PC output column is the result of multiplying each variable
by its loading coefficient and taking the sum. Driving distance was most strongly loaded
against PC1, followed by the accuracy of placing the ball on the putting green (GIR).
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However, the variable for accuracy of hitting the ball onto the fairway was given a negative
coefficient. This meant that while Rory was unequivocally a better player (both in terms
of real-world performance and the SG measure), a player like Cameron that was able to
hit the ball further and was more accurate with getting it on to the putting green—even
despite being less accurate with getting the ball on the fairway—was given a larger PC
output for Driving.

Figure 3.3: Strokes Gained vs Principal Component variables comparison.

Driving Dist.
(Yards)

Fairways
Hit (%)

GIR (%)

Pre Post Pre Post Pre Post
PC1 SG

Cameron Champ 317.9 2.74 55.3 -1.35 81.2 1.52 3.34 0.66
Rory McIlroy 313.5 2.24 61.8 -0.09 78.3 0.54 1.83 1.2
Loading Coef. 0.67 -0.53 0.52

Table 3.3: The raw input Driving variables (prior to centering and scaling) to the PCA,
and the raw output of the Driving PCA. The loading coefficient of each variable along
PC1 and the SG in Driving is also given.

PC1 for the Driving aspect can therefore be interpreted as being high for players that
“hit the ball large distances, especially onto the green, but not on to the fairway”. In a
practical sense this may mean a player can hit the ball a large distance and not worry so
much about accuracy, as long as they can land it on the green in time to meet the par score.
This corresponds with the current prevailing wisdom in golf that such a strategy is one of
the best ways to achieve an overall lower score. While this summary may help to explain
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much of the variation in the dataset, Figure 3.2a still casts doubt on how effective this
is as a performance metric. Additionally, Cameron, who exemplifies this strategy, clearly
has a worse strokes gained than Rory. Given that the R2 value for Driving was reasonable,
a better use of the data could be to directly predict the Driving SG variable (through a
linear model or otherwise) rather than using PCA to try and obtain a summary. This is
left as future work.

PCA Summaries

Figure 3.4 displays the interactive linked plots that summarise each player’s performance
in each of the golfing aspects, as well as overall. Each subplot has PC1 and PC2 along the
vertical and horizontal axes, respectively, and the values on the axes are interpretable as
standard deviations from the mean. For example, Rory McIlroy’s Short game was one
standard deviation above the average player along PC1 and two standard deviations away
from the average player along PC2. PC1’s positive direction is easily interpreted as being
a better player. However, PC2 is less black-and-white with its interpretation and requires
an understanding of the variable loadings to interpret meaningfully.

The player’s name is displayed when hovering over a point in the plot, and shown in
the figure is the result of querying “Rory McIlroy” in the search bar above the plots
(with additional players labelled in place of interactivity). At the time of writing, Rory
was one of the best golfers around and was especially renowned for his driving ability.
The summary plot and PC1 of the Driving subplot have correctly identified Rory as a
significant outlier. Other than Rory, the upper hemisphere of the plot has been populated
by golfers considered to be good (large positive value in PC1). In every PC1 vs PC2
plot, there is no apparent correlation between PC1 and PC2. PC2 is constructed to be
independent of PC1 and serves more the purpose of visual separation than interpretation.

Figure 8.2 in Appendix 8.3 shows the result of running the existing PCA (trained on
professional players) on an amateur player (pseudonymised as Amateur 1). Amateur 1 was
reasonable at golf, on average scoring a few strokes above par. However, when compared
to professional PGA TOUR players, Amateur 1 was a complete outlier. It is no surprise
that the amateur has been placed at the very bottom of PC1 in every plot. A comparison
is possible, but it is certain that it would be misguided due to the characteristics of the
variables varying between the amateur and professional cohorts of players.

These PCA summary plots served as a user-friendly and intuitive means of comparing
and visualising the performance of PGA TOUR players. While the individual PC plots
provided a great deal of detail, the overall plot summarised things nicely.

Principal Component Loading

Figure 3.5 shows one of the visualisations produced for aiding in the interpretation of
PC1 and PC2. Some of the information that can be gleaned from this plot:

• The variable most strongly associated with PC1 was the % on green (Green in
regulation) variable for 150–175 yards.

• All the accuracy based variables (% on green variables) were loaded positively along
PC1. All the distance-based variables (proximity to hole) were negatively loaded
along PC1. This means that PC1 mostly measures a combination of the strokes
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Figure 3.4: PCA summaries for each aspect, and the overall summary. The axes have
been normalised and so are interpretable as standard deviations from the mean.

Note: Additional players have been manually labelled in black in lieu of an interactivity.
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gained and the accuracy of a player’s Long game.

• By construction, PC2 has ended up associating itself with what is left unexplained
by PC1; in this case, the distance-based variables.

Figure 3.5: PC1 and PC2 loading visualisation for the Long game aspect.

These interactive and visual plots were far more effective for understanding the PCs than
a table of text and numbers.

Key Findings

The key findings of the PCA are summarised as follows:

• Where available, the SG metric is the preferred method of summarising a player’s
performance. However, in cases where SG data is unavailable, PCA can still offer a
compelling alternative summary.

• The PCA for the Driving aspect was flawed due to distinct information in the
variables. Linear regression is one viable alternative for generating the coefficients to
use in a summary.

• It is possible but fraught to apply the PCA generated on professional players to
amateur players. Between the cohorts of players the variables are likely to have
different characteristics.

3.4 Discussion

The main goal of the PCA was to compute a summary of a golfer’s performance in a
particular aspect of their game or overall. Because the strokes gained metric is already
well understood, the PCA mainly has its use in the cases where SG data is not available.
For these situations, the PC summaries serve as new metrics of their own. By training the
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PCA on a cohort of players, the variable loadings could construct a summarising metric
without needing strokes gained. This means that even without SG data, an amateur player
or coach would still be able to construct a simple summary of their performance without
needing to get lost in the details of each metric. It is still a question of how close these
summaries would be to optimal in the sense of maximising real-world golfing performance,
but a summary still has some inherent value.

The results of this work showed that, overall, the resulting PCA summaries would still
be reasonable. PC1 of each aspect was reasonably correlated with its SG variable, and
plotting the performance of each player in terms of SG and PC showed minor variation
between the two sets of variables. However, the main limitation of this approach is its
interpretability. Strokes gained is measured in strokes—a fundamental concept any golfer
can understand. In contrast, even reporting the PCA scores as a ”standard deviation from
the mean” has little intuitive interpretation by non-statisticians. Even worse, imagine
trying to explain to a layman that their golfing ability as calculated by a PCA involves
summing the result of multiplying variable X by seemingly arbitrary coefficient Y for every
measured variable. Much of the “advanced analytics” in other sports are often better
than traditional statistics for rating player ability, but their uptake by the spectatorship
is limited by their interpretability. The success of the strokes gained metric is not solely
due to its explanatory power, but largely also to its interpretability. In situations where
interpretability is not an issue (for example, outside of outside of spectatorship and more
towards elite-level coaching) it would be easy to include the SG variables within the PCA
and construct a variable with even more explanatory power than the SG variables alone.
This could then be given an approachable name like “Driving Index” and used for further
advanced analytics.

Another limitation of the PCA is its specificity to the cohort of players it was calculated
over. Computing a PCA over a cohort of professional players and using the same loading
coefficients for amateur players assumes a linear relationship between ability and the value
of the metric. The actual relationship between ability and metric is unlikely to be linear
when extrapolating outside of the range of the data. For example, seeing negative values
for metrics measured as a percentage does not make sense: there is some range of values
that ”make sense” to be observed, but this information is not coded into the PCA. For
example, the utility of going from driving the ball 300 to 305 yards is far greater than
the 1.7% improvement that this appears to be on a linear scale. The range and variance
characteristics of variables will also vary between cohorts: for example, the driving distance
in the professional dataset varies between 270–320. Meanwhile, the driving distance of a
cohort of amateurs is likely to have a much wider spread and be centered at a lower value.
A major limitation of this project was that no cohort of amateur player data was available.
Access to such would have enabled further interesting analysis comparing the cohorts:
seeing which variables were important in both and how their loading varied between the
cohorts.

The Driving aspect was even one where the PCA results were outright unreliable due
to distinct information in the variables of the aspect. The PCA is only concerned with
maximising the amount of variation explained which is not necessarily the same thing
as computing a useful performance metric. As driving is a relatively controlled activity
compared to taking shots from elsewhere on the golf course, it may be challenging to
remedy this problem by merely finding more variables to include. The linear model
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approach of predicting the SG variable, given the other variables, worked surprisingly
well for the Driving category and could be a viable alternative method of generating a
summary. Even still, the linear model was as simple as possible and could have added
complexity like interaction terms or data transformations to improve its predictive power,
or completely different methods of prediction could be trialled. Asides from Driving, even
the other categories with more variables must be questioned because the same quantity
is often stratified by distance to the hole. For example, “% on green” was measured five
times: from shots taken between 100–125, 125–150, 150–175, 175–200, and 200+ yards
from the hole. This was the case for many of the variables in the dataset, and this level of
granularity seems somewhat difficult to justify to compute a summary.

From a data engineering perspective, the PCA analysis offered an interesting challenge:
while the data had to be converted from long to wide format, the long format did prove
efficient for the task of collecting the most up-to-date statistics. By performing a grouping
operation on both the player name and the metric’s name, the operation of filtering for
the most recent metrics was far more efficient than the equivalent computation on the
wide-format dataset. After only keeping the most recent statistics and then converting
to wide format, the file size was decreased from ∼900MB to just ∼10MB. Part of this
increase in memory efficiency was due to only keeping the most recent value for each
statistic. However, the wide data format also eliminated much redundant information that
was needed in the long format.

To summarise, further work in the realm of PCA would address:

• Exploring more variables than the ones given in the handpicked variable list. These
variables were previously known to have already been useful, but other variables in
the dataset could have also been useful. At the same time, including more variables
may make it onerous on the amateur player to collect all the additional information.
Some analysis could be done into how many of the included variables were actually
necessary for similarly good summary statistics.

• Similarly, new derived variables could be computed given the right data. For example,
“Putts per Green in Regulation” could be derived given shot-by-shot data to compute
how many putts were made per regulation landing on the green.

• Finding alternatives to PCA for the Driving aspect, which had unreliable results.
For example, using the linear model coefficients as an alternative. Support Vector
Machines [33] or Random Forests [34] may be effective alternatives.

• Collecting a cohort of amateur players and comparing the results of the PCA between
the cohorts.

• The player rankings could be scraped periodically to have them be most consistent
with the statistics reported in the PGA TOUR data. The PCA summary plots
(Figures 3.4 and 8.2) could also have been improved by incorporating player rank
information.
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4 Cluster Analysis

Having two options of summary statistics (SG and PC), the next step was to group
players into different play styles (e.g., driving-dominant, expert putter). Additionally, this
four-dimensional mapping could be used with a distance function for an amateur player
to identify which professional golfers most match their play style. This would inform
the amateur which golfer’s games and training they could receive the most benefit from
following and improve engagement with the sport.

4.1 Methodology

The ClusterR package [35] was used to perform K-means clustering on the dataset of
PGA TOUR players. As only successful and noteworthy golfers were desired, the dataset
was filtered to keep only the top 250 players according to OWGR ranking. The number
of clusters K was given different values K ∈ {2, 3, 4, 5, 6} and for each value of K, two
experiments were run. Clustering was performed using 1) the four strokes-gained variables
and 2) with the four PCA-summarised variables. The goal of the clustering was, therefore,
to find groups of similar players in the four-dimensional space mapped by either the strokes
gained or PC variables.

Prior to clustering, each player’s metrics were adjusted for their overall ability by nor-
malising the player’s metrics to have mean 0 and standard deviation 1. Adjustment was
necessary to avoid the clustering being more about overall ability than play style.

The clustering results were highly variable, and in general, K-means does not find unique
solutions. For each experiment, clustering was performed N = 5000 times, and the
arrangement with the highest average silhouette width was used as the definitive clustering.
The large number of replications made it highly probable that the global optimum was
found.

Visualisation

Visualising the clustering of players again used the ggplot and plotly libraries. Identifying
the different play styles that each cluster represented was done using box and whisker
plots. A box plot was produced for each cluster to show how the play style of players
varied between the clusters.

The radar charts in the PCA chapter were used for inter-player comparisons of a player
relative to their cohort. Radar charts were also used in the cluster analysis, but were
instead focused intra-player comparisons or a “player profile”. While the axis limits
remained the entire range of values for all players, the data used in the clustering analysis
was adjusted for player ability. An extreme value on these axes just meant a player had
the strongest preference for that particular golfing aspect relative to the other aspects.
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Amateur Recommendation

For an amateur player, it may be interesting to identify a successful professional golfer
with a similar play style and closely follow their training and games. This could also
lead to improved engagement with the game through an identification with a professional
player.

The amateur data was adjusted for player ability in the same way as the professional
data: normalising the metrics to have mean 0 and standard deviation 1. Following this
the data could be fed through the same clustering pipeline to generate cluster predictions
for amateur players. More importantly, professionals with similar play styles could be
identified by choosing a suitable distance metric. One example amateur was picked from
the dataset, and an investigation was conducted into the best choice of distance metric:

• L1-norm: Poor results, too many players had too similar distances from the amateur.

• L2-norm: Better than the L1-norm with clearer distinctions between the players.
However, the mathematically short distances failed to translate into visually similar
player profile plots. This was an issue because it was ultimately a visually similar
profile plot that would convince the amateur of the recommendation.

• Ordinal Matching : This worked in two steps. First, find all professional players
who had the same ordering of metrics. For the given amateur, this meant finding
all professional players whose Driving > Putting > Short-game > Long-game. The
second step was to arrange the professionals by their OWGR ranking and recommend
the highest-ranked players. This worked well at enforcing the idea that recommended
players must have similar strengths and weaknesses.

• Polygon Intersection: A polygon in 2-D space was constructed out of a player’s
metrics that was a direct translation of the player’s profile plot. By translating the
points completely into the visual dimension, the problem of the visual perception of
similarity was addressed directly. Given the amateur’s polygon and the polygon of a
professional player, the area of intersection Aint was computed. Aint as a proportion
pint of the area of the amateur’s polygon Aam was then used to generate the polygon
intersection metric d:

pint =
Aint

Aam

d =
1

pint
− 1

Taking the reciprocal of pint and subtracting 1 was necessary to give d the typical
interpretation of a distance metric: starting at 0 for a perfect match and increasing
the worse the fit (smaller area of intersection). Figures 4.1a and 4.1b illustrate this
concept and serve as an example of a good and bad match respectively. Since the
player metrics have already been adjusted to remove the effect of player ability, there
was no need to adjust for different sized polygons when matching. Experimentation
verified that doing so did not provide any noticeable benefit to the matching,
confirming that the adjustment for ability was sufficient.
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In each case, the recommended results were filtered to only suggest players in the top 50,
ensuring relevancy of the results. The polygon intersection was used as a “gold standard”
for evaluating the performance of the other distance metrics.

(a) Amateur with Dustin Johnson.
(Closest match, d = 0.12)

(b) Amateur with Brooks Koepka.
(30th closest match, d = 1.5)

Figure 4.1: Polygon intersection method.
Key: Black outline = Amateur, Red outline = Professional, Purple shaded = Intersection

4.2 Results

The results of the cluster analysis examine the choice of PC vs SG variables, the choice
of K, the resulting cluster configuration, and recommendation to amateurs. Interactive
HTML documents containing the full range of plots in this section are hosted on GitHub
for both the SG1 and PC2 variable analyses.

SG vs PC

With both SG and PC variables available to use as summaries, the first step was to decide
which set of variables to use. Table 4.1 shows the average silhouette width of clusterings
performed using the SG or PC variables. Each clustering configuration was performed
with 5000 replications and the average silhouette width over each point in the clustering
was computed to determine the optimal clustering. The value reported is then the best
average silhouette width over every replication. The remainder of this section reports
results using PC variables and K = 4. While this configuration did have the worst average
silhouette width, the differences are minor. The PC variables were preferred due to their
accessibility, and K = 4 was chosen for interpretability as a compromise between too few
and too many clusters. For comparison, Appendix 8.4 contains results of a clustering using
K = 6.

1https://github.com/OptimusPrinceps/Golf-Masters/blob/main/output/cluster_SG.html
2https://github.com/OptimusPrinceps/Golf-Masters/blob/main/output/cluster_PC.html
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It is important to note for this section that the clustering was done on the data post-
adjustment for player ability. That is, a player’s “phenotype” was determined by the
relative comparison of their abilities in each aspect.

K 2 3 4 5 6
SG 0.37 0.36 0.34 0.36 0.36
PC 0.39 0.35 0.33 0.36 0.36

Table 4.1: Average silhouette width of clustering using SG or PC variables.

Clustering Visualisation

Figure 4.2a shows a visualisation of the clustering using the SG variables and plotted
along the Long game and Short game axes. Figure 4.2b contains a pairs-style plot for
every combination of axes.

This plot also featured the same interactivity of the search box and hovering over points
to view the player name and rank. It provided a high-level overview of the clustering,
allowing players to be located on the plot and compared to each other, as well as a visual
heuristic for judging the quality of the clustering. The top two players by OWGR rank in
each cluster are annotated.

Figure 4.3a shows a box-plot of each cluster. Each cluster in Figure 4.3a is described
in Table 4.3b. Cluster 3 has a much better median rank than the other clusters. Because
the data had already been adjusted for player ability, it serves as evidence that players
who are strong in Long game are more successful on the tour. This is somewhat consistent
with the current prevailing wisdom in golf that hitting the ball further on the initial drive
is one of the best ways to achieve a better overall score. Bryson DeChambeau is a player
well known for this strategy, however he has actually been assigned to Cluster 4. This
indicates that his putting may be much better than perceived and illustrates the insights
available by using SG or the PC summary metrics.

Clusters 2 and 4 feature a preference away from Driving and Long game and have the worst
median ranks. The silhouette width measures how well a point is suited to its assigned
cluster, and the average silhouette width across a cluster measures how well-defined the
cluster itself is. Cluster 3 had the “loosest” cluster but also had the largest cluster size.

The health of each cluster is also visualised in Figure 4.3c. Cluster 3 shows one player
who may have been better suited to a different cluster (negative silhouette width) and the
overall low silhouette width of each point in the cluster. Note that while it is possible to
reassign this point with the negative silhouette width to its neighbouring cluster, this does
not necessarily result in a better clustering configuration. After reassignment, the point
could still be ill-suited to the new cluster. This reassignment procedure was implemented
but found to have made no difference to the optimal clustering configuration. For this
sample size of players, 5000 replications seemed enough to find the optimal configuration.
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(a) Overall cluster visualisation with top two ranked players labelled in each cluster.

(b) Pairs-plot style clusters.
E.g. the first column has Driving on the x-axis and the first row has Driving on the y-axis.

Figure 4.2: Clustering Visualisation for K = 4 and PC variables. Larger sized points
represent higher ranked players.

24



Chapter 4. Cluster Analysis

(a) Box-plots.

Player
Phenotype

Cluster
Size

Median
Rank

Avg.
Silhouette Width

Cluster 1 Strong Driving, weak Short game 32 97 0.37
Cluster 2 Strong Short game, weak Driving 20 100 0.37
Cluster 3 Strong Long game, weak Putting 36 67.5 0.25
Cluster 4 Strong Putting, weak Long game 26 100 0.36

(b) Summary of each cluster.

(c) Silhouette plot.

Figure 4.3: Cluster configuration for K = 4 and PC variables.
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Amateur Recommendation

Using the polygon intersection distance metric, Figures 4.4a and 4.4b show the player
profiles of Amateur 1 and the closest matching professional. Dustin Johnson was also
the top match using the ordinal matching and L2-norm metrics. However, the ordinal
matching relied on Dustin’s high rank to push him to the top of the list, and the L2-
norm’s subsequent recommendations were less convincing than those generated by polygon
intersection. Using the polygon intersection as a ground truth, Table 4.2 reports the top
five recommended players for each of the distance metrics. The polygon intersection score
is used as a “gold standard” to evaluate the performance of the other distance metrics,
with a lower value corresponding to a better recommendation. The L2-norm is the next
best alternative to polygon intersection, matching the top three recommendations of the
polygon intersection exactly. The ordinal matching approach did not work so well on its
own but could be used in conjunction with the L2-norm. This would enforce the ordinal
constraint while retaining a good measure of distance, However, for these data, this still
results in an average top-5 polygon intersection score of 0.47 (i.e. no improvement over
using the L2-norm alone).

L1-Norm
Ordinal

Matching
L2-Norm

Polygon
Intersection

1 Xander Schauffele 0.58 Dustin Johnson 0.12 Dustin Johnson 0.12 Dustin Johnson 0.12
2 Rory McIlroy 0.51 Jon Rahm 0.50 Jason Day 0.22 Jason Day 0.22
3 Daniel Berger 0.87 Justin Thomas 2.16 Harris English 0.35 Harris English 0.35
4 Jon Rahm 0.50 Rory McIlroy 0.51 Xander Schauffele 0.58 Bryson DeChambeau 0.37
5 Dustin Johnson 0.12 Bryson DeChambeau 0.37 Bubba Watson 1.08 Jon Rahm 0.50
Avg. 0.52 0.73 0.47 0.31

Table 4.2: Top five recommended players for each distance metric. The polygon inter-
section score is given as a “gold standard” to evaluate the metric’s performance. Lower
values correspond to better recommendations using the polygon intersection method.

Given this recommendation, Amateur 1 would recognise that Dustin has a similar play style,
and the amateur could follow Dustin’s training and games to see how to maximise their
game given their strengths and weaknesses. At worst, it still adds a personal connection
to a kindred player and deepens their engagement with the sport.

(a) Amateur 1’s player profile. (b) Dustin Johnson’s player profile.

Figure 4.4: Amateur play style based recommendation.
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Key Findings

The key findings of the cluster analysis are summarised as follows:

• After adjusting for player ability, it was possible to use clustering to group players
by their play style.

• The silhouette width varied little with the choice of SG or PC for summarising
variable and of K. This made the decision of which variable set and which K to use
somewhat arbitrary. The PC variables and K = 4 were chosen for accessibility and
interpretability.

• The cluster arrangement maximising silhouette width with K = 4 grouped players
into four distinct and interpretable categories.

• There was a marked preference for highly ranked players towards Cluster 3 (charac-
terised by being Long game dominant).

• Providing recommendations of similar players is feasible and very effective due to
the polygon intersection distance metric.

4.3 Discussion

The objective of the cluster analysis was to adjust for player ability and group players by
their play styles. The main application area of this is in those interested in and following
the sport of golf: grouping players by similar play styles provides an additional layer of
analytic value. Trends could be deduced not just on individual players, but on groups of
players with similar play styles and this information conflated with the types of courses
that are being played in tournaments and what kind of players they favour.

Adjustment for the player’s ability was also required in order to avoid their ability
becoming a confounder. The results showed that the adjustment was largely successful
and provided meaningful insight into the preferences of different players. However, because
the adjustment enforced constant variance of the metrics, well-rounded players ended up
with exaggerated differences in their profile plots. This could be rectified by exploring
alternative adjustment transformations.

The choice of K and whether to use the SG or the PC summarising variables was difficult
to make. Each decision had multiple viable options, though in the end it came down
to accessibility and interpretability: the PC variables are broadly available, and K = 4
provided distinct and sensibly defined clusters. Rather than only having hard clusters
(where a player is in one cluster only), the clustering could be easily extended to allow
players to exist on a continuum towards each cluster. For example, rather than classifying
a player as being “Putting dominant”, a second closest cluster could further describe the
player, such as having a major preference for the Putting-dominant cluster, with a minor
preference for the Long game-dominant cluster. This problem would also be solved by
having more clusters that naturally separate into groups like this, but the small number of
players available made it unreasonable to have K too large. Incorporating player data from
other years would help to alleviate this problem and allow for very interesting visualisations
and a whole new longitudinal class of analysis. A plot like Figure 3.4 or 4.2a animated
to show how the performance/play style of players evolved over multiple years of playing
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golf would be highly interesting. Performing the clustering a large number of times and
taking the best configuration helped to at least improve the results’ reliability.

The player recommendation was highly successful due to the power of the polygon
intersection method. However, the same question arises of whether to use SG or PC
variables when computing the distance metric. Interpretability is still a concern, but less
so given that the user will be visually confronted with the player profile charts reinforcing
the recommendation. In this case, it may be preferable to use the PC variables given that
they do not require SG data and the primary audience for the recommendations will be
amateurs. For analytics platforms that natively compute SG metrics, an experiment could
be to roll out to different groups of users recommendations based on the SG and the PC
variables separately and collect user feedback to judge which variable set is more effective.
The ideal scenario is a user that, upon receiving a recommendation of a professional player
with a similar play style, follows that player’s games and training and then applies what
they learn to improve their own game. Unfortunately, as only very little amateur data
was available, it was difficult to assess the efficacy of the recommendations over multiple
players.

One limitation of the data available for this project was that the OWGR ranking was
only available for the end of 2020, while the PGA TOUR dataset was collected over 2019.
The OWGR keeps an archive of previous rankings, but the link to the rankings for 2019
were broken. The OWGR ranking data would need to be matched with up-to-date PGA
TOUR statistics for the most relevant visualisations. Currently, the visualisations and
inference based on the player rank may be misleading. Players were also filtered out by
rank before the clustering, and some players were also dropped due to missing data in the
PGA TOUR dataset. The impact of dropping these players could be investigated further,
and techniques like imputation used to address missing data.

To summarise, further work in the realm of the cluster analysis would address:

• Alternative methods of adjusting for player ability that retain relative differences in
metrics.

• Incorporating more player data from multiple years and extending the analysis to be
longitudinal.

• Collecting a cohort of amateur data to assess the efficacy of the recommendations.
Furthermore, an assessment on whether SG or PC based player recommendations
are preferred by end-users.

• Matching of timeframes of PGA TOUR data and OWGR rankings.

• Analysis on the rank cut-off for players to be included in the cluster analysis, and
the effect of dropping players with missing data.
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5 Course Difficulty Analysis

The PCA chapter used a range of player metrics to create an alternative summary statistic
for players in cases where strokes gained data is not available. The Clustering chapter then
looked at using summary statistics to group players by play style. This chapter examines
using course ratings to adjust for course difficulty and make player comparisons when
neither detailed metrics nor summary statistics are available. Creating new comparisons
between players provides more visibility and allows players to better rate their ability even
when playing on completely different courses. For example, a player in New Zealand can
currently only guess how good they are compared to a college golfer in the US.

Following the background on data pre-processing, this chapter is broken into two sections:
1) comparing the college players to scratch golfers and 2) adjusting player scores for the
difficulty of the course.

5.1 Dataset and Pre-processing

The PGA TOUR dataset used in the previous two chapters contained statistics on players
averaged over many of their games. In contrast, this chapter considers data on a hole-by-
hole basis.

The National Collegiate Athletic Association (NCAA) runs college golf tournaments in
the United States. A dataset of two CSV files (∼150MB each for males and females) had
previously been scraped from their website. The NCAA dataset contained the following
columns: player name, tournament name, venue, the round, the hole number, the total
distance of the hole, the par score for the hole, and the player’s score on the given hole.
Players in this dataset play across three divisions: I, II, and III.

One of the main issues with comparing golf scores is in accounting for course difficulty.
The strokes gained metric manages to address this but requires a formula and hole-by-
hole or even shot-by-shot distances. The course rating can be used instead to account
for difficulty when SG cannot be calculated. The NCAA dataset did not come with
course ratings. Instead, the venue names it contained were used to search the US Golf
Association’s National Course Rating Database (NCRDB) [36] for the course rating.
However, unfortunately, the search results were retrieved dynamically. A significant
amount of time could easily have been invested into reverse-engineering the requests and
headers necessary to retrieve the results directly without any guarantee of success. Instead,
a Docker [13] container was set up to run a headless version of the Firefox web browser
and RSelenium used to simulate human interaction with the browser.

The RSelenium [12] package was then used to provide programmatic control over the
browser. Once the page had loaded, the page’s source was used to locate the text field
element for search query input. The venue name was injected into the element, and the
search button clicked by the program. At this point, R was instructed to wait 5 seconds
for the results to be retrieved and dynamically loaded onto the webpage before the page
source could then again be inspected for the links to the course rating pages returned by
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the result of the query.

The code was able to run without any human intervention. However, due to a combination
of the overhead involved in running the Firefox browser and time spent waiting for the
search query results, it required 4-5 hours to run to completion. Fortunately, no captchas
were encountered that could have slowed the process down even further. Results were
stored at each step and re-used if necessary to avoid repetition of tasks. Error handling was
also put into place that restarted the browser process in the event of a crash. Unfortunately,
some of the course names from the dataset provided did not match the names on the
course rating database website and failed to return any results. In many cases, this was
due to the search string being too specific. For these cases, a complex regular expression
was developed to format the string before submitting the search query, removing many
words and symbols that did not help distinguish the unique course name. Further details
on this are available in Appendix 8.5.

The course rating pages themselves were simple static web pages. The page source
contained an HTML table of course ratings that could be read directly into R, and the
appropriate values extracted. Hence, a separate script was written to load the output of
the dynamic web scraping and populate a dataset of course ratings for males and females
in under 10 minutes. This code was kept independent of the code for retrieving the course
IDs to avoid running 4-5 hours worth of code before executing something much more
straightforward.

Due to the mismatch of the course names in the NCAA and the online dataset, of the 496
distinct courses in the NCAA datasets, 337 (68%) were matched with course ratings. As
the purpose of this analysis was to adjust for course difficulty, players who had only played
on one course had to be dropped. Figure 5.1 shows the distribution of the number of
unique venues played. After excluding ∼4,500 players, the final NCAA dataset contained
3,083 males and 2,691 females (5,774 total) who had played more than one course. In
total, there were 975,036 holes of data.

Figure 5.1: Distribution of the number of unique venues played by each player in the
NCAA dataset.

5.2 Comparison to Scratch

The first area of investigation with the NCAA dataset was comparing college golfers to
scratch players. The total score for the round was calculated, with Figure 5.2 visualising
the total score against the course rating. In cases where a player may have played on the
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same course multiple times, the tournament ID uniquely identifies games. Few courses
have ratings below 70 and above 80, but compared to the typical par of around 72 this
means most courses in the NCAA dataset are more difficult than average. As the course
ratings are defined as the number of strokes, a scratch player would require to complete a
round on the course, the red dashed line (gradient of 1) shows the expected total score
of a scratch player. The green smoothed line shows how the NCAA amateurs actually
performed. On easier courses the amateurs are scoring worse (higher score) but start
to approach scratch level for the harder courses. This may suggest that some courses
have a reputation of being easier or harder and are particularly played by lower or higher
skill players respectively. Alternatively, it may even suggest that the course rating is
not actually informative of difficulty for these players. A mixed model could be used to
formally test whether the course rating has an effect on the to-par scores of players. For
example, with the course rating as a fixed effect and the player as a random effect, a
non-zero coefficient for course rating would provide evidence that it does inform player
scores. This is left as future work.

Figure 5.2: Player score vs course rating. GAM smoother fitted in green. Red dashed
line is expected total score for a scratch player.

The difference between the course rating and total score was taken to compare the college
golfers to scratch players. Figure 5.3 shows the distribution of strokes per round relative
to scratch for college golfers. A round of golf typically has a par of 72 and 18 holes, so
a strokes relative to scratch of 18 would mean the college player is, on average, taking
one additional shot compared to the scratch player per hole. Table 5.1 gives additional
quantile values and shows that the top 31.6% of college players in the dataset are at or
better than scratch. There is a right-tail of some poorer players needing more shots to
complete the round. The worst seen was 104 shots above scratch, but is a major outlier.

Top 10% 25% 31.6% 50% 75% 90%
Strokes above scratch -2.38 -0.63 0 1.95 5.65 11.72

Table 5.1: Quantile table of number of strokes above scratch per round for college golfers.
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Figure 5.3: Number of strokes per round of college golfers relative to scratch golfers
with labelled quantiles. Note: the X-axis has been truncated at 30.

5.3 Course Difficulty Adjustment

The second area of investigation with the NCAA data was to adjust player score-to-par
performance for the difficulty of the course. In addition to the course ratings, the expected
number of strokes required to complete the hole (from the tee) was computed using the
strokes gained formula and the distance of each hole. This served as another adjusted par
score and provided a comparison against the adjustments from the course rating. The
analysis is defined formally as follows:

Let P be the set of all players, T the set of college golf tournaments, C the set of all
courses, R the set of rounds of golf, and H the set of holes played. Now define sp,t,c,r,h
to be the score of player p ∈ P in tournament t on course c ∈ C in round r ∈ R on hole
h ∈ H. Let xt,c,r,h denote the par score for hole h in round r of course c in tournament t.

For round r of a course c with rating CRc, the course rating adjustment factor CRadjc,r
was the course rating divided by the par for the round for any t1 ∈ T :

CRadjc,r =
CRc∑
h xt1,c,r,h

As the course rating is defined as the expected number of strokes required for a scratch
player to complete the round r of course c, CRadjc,r > 1 if c is more difficult than usual
and CRadjc,r < 1 if c is easier than usual.

For hole h of round r on course c, let SG(h) return the expected number of strokes needed
for a scratch player to complete hole h of known total distance via the SG metric.

Now compute the average scores-to-par across a course for each player and each course
using the mean µ, where CourseRatingp,c and SGscratchp,c are the scores-to-par adjusted
by course rating and course distance respectively..

Rawp,c = µ
t,r,h

[sp,c,r,h − xc,r,h]

CourseRatingp,c = µ
t,r,h

[(sp,c,r,h × CRadjc,r)− xc,r,h]

SGscratchp,c = µ
t,r,h

[sp,c,r,h − SG(h)]
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Figure 5.4 shows the mean to-par scores over every player Rawp,c, CourseRatingp,c, and
SGscratchp,c. Both adjustments have decreased the average score on the course, indicating
that most courses are indeed harder than par. At this point a mixed model could be used
to formally test the effect of the course rating on the to-par scores.

Figure 5.4: Mean to-par score over every player including adjustments. The mean of
each distribution is annotated. Note: the X-axis has been truncated at 2.

The difference in standard deviations between the adjusted scores-to-par and the raw
score-to-par for each player is then denoted by ∆. This measures how the within-player
score variability has changed relative to using the unadjusted score-to-par. At this point,
a mixed model could again be used with a random player effect to formally test whether
there is any significant effect due to the adjustment. This is left as future work.

∆CR
p = σ

c
(CourseRatingp,c)− σ

c
(Rawp,c)

∆SG
p = σ

c
(SGscratchp,c)− σ

c
(Rawp,c)

σc(CourseRatingp,c) and σc(SGscratchp,c) are then measures of the within-player score
variability after adjustment. Figure 5.5 visualises each ∆ to show how the within-player
score variability has changed from the raw score-to-par baseline. Ideally, after adjustment,
the within-player score variability would have decreased as the scoring bias due to the
difficulty of the course was removed. Unfortunately, both methods of adjustment seem
to increase the within-player score variability with means above 0. The SG adjustment
seems to have made little difference, while the course rating adjustment is quite varied in
that it can make a player’s score variation better or much worse.
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Figure 5.5: Distribution of within player change in scoring standard deviation ∆CR
p and

∆SG
p .

5.4 Discussion

The objectives of the course difficulty analysis were to compare college golfers against
scratch golfers and against each other, having removed the bias caused by the difficulty
of the course. Comparing college golfers against scratch uses an established benchmark
to provide a new level of comparison for performance in golfing. For example, a young
player in New Zealand playing at a scratch level would immediately know they were in
something like the top 30% of college golfers and know that a golfing scholarship to an
American university could be within reach. Similarly, adjusting for the difficulty of the
courses allows for comparisons of games and players on courses of varying difficulty. For
example, a player scoring a par of 72 at their local golf course may not necessarily score
par at a course played by the PGA TOUR.

The NCAA dataset contained players of a range of ability that somewhat limits the
value of a benchmark developed on this dataset. Removing players that have not played
multiple courses has addressed this by only keeping players with some consistent showing
in tournaments, however, the scope of the analysis could be further reduced to only NCAA
players in division I. Data on players in each division is available and doing so would
yield a more pragmatic benchmark. Alternatively, using the current dataset, only the
top-scoring players in each tournament could be kept.

Unfortunately, adjusting for the difficulty of the course did not have the desired effect.
Adjusting for course difficulty is a high-yield, but difficult problem and even course ratings
designed specifically for this purpose have not managed to solve it. Strokes gained only
considers the distance of the hole but incorporating additional information reduces its
efficacy as an interpretable metric. Still, something like a “course-adjusted strokes gained”
would be a highly valuable metric for comparison. In relation to the PCA analysis, having
variables that factored in the course difficulty could help to improve the results and
accuracy of the metrics of comparison. Even without a variable adjusted explicitly for
course difficulty, something like the average course rating of courses a player has played
on would be insightful. This would not work with the existing PGA TOUR dataset for
this project but could conceivably be collected and incorporated in the future.

34



Chapter 5. Course Difficulty Analysis

To summarise, further work in the realm of the course difficulty analysis would address:

• A significant amount of effort was put into matching the course names with those in
the online database, but this could still be improved with some manual inspection
and better accounting for every edge case.

• Mixed models could be used to formally test the effects of course rating and the
adjustments on scores and scoring variation respectively.

• The scope of the NCAA dataset could be restricted to only high-performing college
golfers by computing tournament rankings of players or filtering based on NCAA
division.

• Course ratings could be collected for PGA tour players and incorporated into the
PCA analysis.

• Ongoing work into how to effectively adjust for the difficulty of the course.
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6 Summary and Conclusion

Golf is a growing sport with many new and existing players interested in improving their
play each year. Analytics platforms exist that allow amateur and professional golfers alike
to log their data and receive personalised feedback and training plans. Over the course of
a semester, this project has improved on the analytics and insight available to players of
golf through three major areas of work.

The Principal Component Analysis showed that it was possible to reconstruct summarising
metrics with similar explanatory power to the strokes gained metric. This means that
in cases where strokes gained data is not available, players can still receive powerful
summaries of their performance in each aspect of their game and overall. While the PCA
was less effective for the Driving aspect, a viable alternative was identified.

The cluster analysis successfully adjusted for player ability and grouped players based on
their play style. An interpretable set of clusters was identified and amateurs were also
able to use their data to be matched with a professional golfer of similar play style, to
suggest how following that professional may provide insight into improving their play and
deepen their engagement with the sport.

The course difficulty analysis aimed to remove the bias of differing course difficulty. In the
process, a new benchmark was established comparing college golfers to scratch players.
Adjusting for the difficulty of a course is a valuable prospect but remains a difficult problem
with further investigation required.

As a part of the process, this work has also identified challenges, limitations, and opportu-
nities for further work. By integrating the novel metrics, visualisations, recommendations,
and benchmarks produced in this work into analytics platforms, golf players around the
world can benefit from additional engagement and insight into their game.
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8 Appendices

8.1 Complete List of PGA TOUR Variables

Table 8.1 contains the name, golf aspect, and short description of every variable used in
the analyses on the PGA TOUR dataset. All variables are averages over all of the games
played by a golfer in the 2019 season.

Abbreviations and terms used in the table are defined:

• GIR (Green in Regulation): ball hit onto the green with at least two strokes left to
score par.

• Scrambling : Scoring a par or better after landing in a greenside bunker.

• Sandsave: Rate at which the player sinks the ball within two shots from a greenside
bunker (regardless of final score).

• One-putt : Sinking the ball in a single putt from the green.

• Three-putt avoidance: Sinking the ball in two or less putts.
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Aspect Name Description

General

Score vs par Number of strokes taken minus hole par
SG: Total Overall strokes gained over the entire hole
Birdie or better Rate of scoring 1 or more better than par
Par 3 - Birdie or better Birdie rate on par 3 holes
Par 4 - Birdie or better
Par 5 - Birdie or better
Bogey or worse Rate of scoring 1 or more or worse than par
Par 3 Average score Average score on par 3 holes
Par 4 Average score
Par 5 Average score

Driving

SG: Driving Strokes gained on drives
Driving distance Driving distance in yards
Fairways hit Rate of balls hit onto fairway from the tee
GIR (See description above)

Long game

SG: Long game Strokes gained on shots >100 yards from hole
GIR: 100-125 yds Rate of GIRs from shots taken 100-125 yards from hole
GIR: 125-150 yds
GIR: 150-175 yds
GIR: 175-200 yds
GIR: >200 yds
Proximity to hole: 100-125 yds Remaining dist. to hole of shots taken 100-125 yds from hole
Proximity to hole: 125-150 yds
Proximity to hole: 150-175 yds
Proximity to hole: 175-200 yds
Proximity to hole: 200-225 yards
Proximity to hole: 225-250 yards

Short game

SG: Short game Strokes gained on shots <100 yards from hole
Scrambling (See description above)
Scrambling: <10 yds
Scrambling: 10-20 yds
Scrambling: 20-30 yds
Scrambling: >30 yds
Sandsaves (See description above)
GIR: <75 yds
GIR: 75-100 yds
Proximity to hole: 50-75 yds
Proximity to hole: 75-100 yds
Proximity to hole: bunkers Remaining dist. to hole of shots taken from bunkers/sand

Putting

SG: Putting Strokes gained on shots taken on the green
One-putt: all distances (See description above)
One-putt: <5 yds
One-putt: 5-10 yds
One-putt: 10-15 yds
One-putt: 15-20 yds
One-putt: 20-25 yds
One-putt: >25 yds
Three-putt avoidance (See description above)
Three-putt avoidance: <5 yds
Three-putt avoidance: 5-10 yds
Three-putt avoidance: 10-15 yds
Three-putt avoidance: 15-20 yds
Three-putt avoidance: 20-25 yds
Three-putt avoidance: >25 yds
Birdie conversion Rate at which a player successfully putts a birdie or better
Putting average Average number of putts a player will make on the green
Total distance of all putts Total distance of all putts made per round in inches

Table 8.1: Complete list of variables and descriptions
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8.2 Percentage of Variance Explained

For each aspect, a PCA was conducted with every variable included and compared against
a PCA without the SG variable included. Figure 8.1 shows the percentage of variance in
the data explained by PC1 with and without the SG variable included.

Figure 8.1: Percentage of variance in the data explained by PC1 with and without
including the SG variables.

Interpreting the change in variance explained when including the SG variable would be
bad practice as the underlying data used to train the two sets of PCAs has changed.

In every aspect, the percentage of variance explained by PC1 is reasonable enough for
it to be a worthwhile summary. The Driving aspect in particular had a high amount of
variance explained.

8.3 PCA applied to Amateur Data

Figure 8.2 shows the result of running the existing PCA (trained on professional players)
on an amateur player (pseudonymised as Amateur 1). Amateur 1 was reasonable at golf,
on average scoring a few strokes above par. However, when compared to professional PGA
TOUR players, Amateur 1 was a complete outlier. It is no surprise that the amateur has
been placed at the very bottom of PC1 in every plot. This is even despite the strokes
gained variable for the amateur being relative to scratch golfers (those who play at par
or better), while the strokes gained variable for the players in the PGA TOUR dataset
is relative to PGA TOUR professionals. By incorporating other variables into the PCA
summaries, a comparison can still be made despite the different definitions of strokes
gained. This comparison would be far more reasonable for a player of ability closer to a
PGA TOUR professional.

42



Chapter 8. Appendices

Figure 8.2: PCA Summary with amateur data included. The axes have been normalised
and so are interpretable as “standard deviations from the mean”

Note: Additional players have been manually labelled in black in lieu of an interactivity.

8.4 Clustering with K = 6

Figures 8.3 and 8.4 show the boxplot and silhouette plot of a clustering using the PC
variables and K = 6. Table 8.2 summarises the properties of each of the clusters.

Cluster
Size

Median
Rank

Avg.
Silhouette Width

Cluster 1 22 55.5 0.42
Cluster 2 15 97 0.27
Cluster 3 19 136 0.46
Cluster 4 28 104 0.36
Cluster 5 22 68.5 0.36
Cluster 6 18 124 0.24

Table 8.2: Summary of each cluster
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Figure 8.3: Cluster box-plots using PC variables and K = 6.

Figure 8.4: Cluster silhouette plot with K = 6.
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8.5 Regular Expression for Course Name processing

The following R code creates a string rexpr by joining each of the patterns together with
a vertical bar character. This is then used with gsub to remove all occurrences of the
matching patterns. Table 8.3 gives examples of course names before and after processing
with this regular expression. Note that course names were only processed if they did not
return any results as a search query on NCRDB.

1 rexpr <−
2 paste ( ’The ’ ,
3 ’ Co l l ege ’ ,
4 ’ Un ive r s i ty ’ ,
5 ’ Gol f ’ ,
6 ’ Club ’ ,
7 ’ Course ’ ,
8 ’ Country ’ ,
9 ’ Beach ’ ,

10 ’ . ∗@’ , # Everything be f o r e an @ symbol
11 ’ \\ ( . ∗ ’ , # Everything a f t e r an open bracket
12 ’ \\bat \\b ’ , # at ( whole word matching )
13 ’ \\ bof \\b ’ , # o f ( whole word matching )
14 ’ \\band\\b ’ , # and ( whole word matching )
15 ’ \\b(G|C) \\ . ?C\\ . ?\\b ’ , # matches GC or G.C. or CC or C.C ( whole

word matching )
16 # Using negat ive lookbehind , matches a − f o l l owed by anything as

long as i t i s not preceded by a two− l e t t e r word at the s t a r t o f
the l i n e .

17 ’ (?< ! ˆ\\w{2}) −.∗ ’ ,
18 sep=’ | ’ ) # Join everyth ing toge the r with a |
19

20 # Appl ies rexpr to each coursename in a vec to r
21 c l ean course name <− f unc t i on ( x ) {
22 # Input :
23 # x : vec to r o f coursenames
24 # Returns :
25 # A vector o f shortened coursenames
26

27 x %>%
28 gsub ( rexpr , ’ ’ , . ,
29 i gno r e . case = TRUE,
30 p e r l=TRUE) %>%
31 # Remove extra whitespace
32 gsub ( ’ {2 ,}? |ˆ +| +$ ’ , ’ ’ , . )
33 }

Listing 8.1: Regular expression course name processing.

Before After
The University Club at Arlington Arlington
En-Joie Golf Club En-Joie
Watertown Golf Club - Inside - Outside Course Watertown
Royal Oaks Country Club (Dallas) Royal Oaks
Wildhorse Golf Club @ Robson Ranch - West/North Wildhorse

Table 8.3: Before and after course name processing
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8.6 Complete Code Listings

This section contains all the code used in this project. The directory structure is as follows:

• utils

– data vis.R

– rating utils.R

– read data.R

• cluster.Rmd

• course ID scrape.R

• course rating.Rmd

• course rating scrape.R

• data aggregation.R

• PCA.Rmd

1 ########################################################################
2 # This f i l e conta in s f u n c t i o n s used in producing data v i s u a l i s a t i o n s #
3 ########################################################################
4 l i b r a r y (pacman)
5 # May need to run the l i n e below i f l oad ing gg b ip l o t d i r e c t l y does not work
6 # i n s t a l l g ithub (” vqv/ gg b ip l o t ”)
7 p load ( devtoo l s , ggb ip lot , fmsb , rves t , RCurl , f i e l d s , png )
8

9 # URL f o r r e t r i e v i n g p laye r headshots
10 baseURL <− ’ ht tps : //www. pgatour . com ’
11

12 # Constant l i s t o f l i n k s to p layers ’ p r o f i l e pages
13 # Page conta in s <a> e lements with c l a s s ” player−l i n k ” and h r e f po in t ing to

the player ’ s p r o f i l e page
14 tryCatch ({
15 p layer . l i n k s <− read html ( paste0 (baseURL , ”/ p l ay e r s . html” ) ) %>%
16 html nodes ( xpath=’ //a [ @class=”player−l i n k ” ] ’ ) %>%
17 html a t t r ( ’ h r e f ’ )
18 } , e r r o r=func t i on ( e ) message ( ’ Could not connect to i n t e r n e t ’ ) )
19

20

21 # Function f o r producing b i p l o t s
22 gg b ip l o t . func <− f unc t i on (DIM. pca ) {
23 ##############
24 # Inputs :
25 # − DIM. pca : an ob j e c t c r ea ted by c a l l i n g run pca in PCA. rmd
26 #
27 # Outputs :
28 # Pr int s the b i p l o t
29 ##############
30

31 g <− gg b ip l o t (DIM. pca$pca ,
32 obs . s c a l e = 1 ,
33 var . s c a l e = 1 ,
34 # groups =
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35 e l l i p s e = TRUE,
36 c i r c l e = TRUE,
37 e l l i p s e . prob = 0 . 6 8 )
38 g <− g + s c a l e c o l o r d i s c r e t e (name = ’ ’ )
39 g <− g + theme ( legend . d i r e c t i o n = ’ h o r i z o n t a l ’ ,
40 l egend . p o s i t i o n = ’ top ’ )
41

42 # Note that arrows c l o s e to each other in t h i s p l o t i n d i c a t e s high
c o r r e l a t i o n .

43 pr in t ( g )
44

45 }
46

47 # Search l i s t o f URLS f o r p laye r name and return the p laye r ID
48 # This can be appended to the baseURL to get the player ’ s p r o f i l e page URL
49 get headshot u r l <− f unc t i on ( poi ) {
50 ##############
51 # Inputs :
52 # − poi : the name o f the p laye r o f i n t e r e s t
53 #
54 # Returns :
55 # URL of the headshot image f o r the p laye r o f i n t e r e s t
56 ##############
57

58 p layer . u r l <− gsub ( ’ ( | \ \ . ) ’ , ’− ’ , po i ) %>%
59 grep ( x = player . l i nk s , i gno r e . case = TRUE, value=TRUE)
60

61 # I n d i c a t e s mu l t ip l e matches
62 # TODO: e r r o r handl ing here
63 s t o p i f n o t ( l ength ( p laye r . u r l )==1)
64

65 # Remove any non−d i g i t cha rac t e r to j u s t l e ave behind the p laye r ID
66 p layer . id <− p layer . u r l %>%
67 gsub ( ’ (\\D) ’ , replacement = ’ ’ , x = . )
68

69 # Return the headshot u r l
70 # TODO: This i s a b i t dangerous as opposed to f i n d i n g the l i n k v ia the

html o f the p laye r p r o f i l e page
71 s p r i n t f ( ’ https : //pga−tour−r e s . c l oud inary . com/image/ upload /c f i l l , d

headshots d e f a u l t . png , f auto , g f a c e : center , h 350 , q auto ,w 280/
headshots %s . png ’ , p laye r . id )

72

73 }
74

75 # Produces the radar chart / p laye r p r o f i l e s
76 g o l f chart <− f unc t i on ( df , poi ,
77 co l our = ”#00AFBB” , #TODO could get the dominant

co l our o f the j e r s e y us ing k−means
78 v l a b e l s=colnames ( df ) ,
79 v l cex = 0 . 8 , # Var iab le l a b e l cha rac t e r expansion
80 c a x i s l a b e l s = NULL,
81 t i t l e=NULL, . . . ) {
82

83 ##############
84 # Inputs :
85 # − df : the dataframe o f pga tour p laye r s t a t s
86 # − poi : the name o f the p laye r o f i n t e r e s t
87 # − co l our : the co l our o f the radarchart
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88 #
89 # For documentation on the r e s t o f the arguments , s e e ? radarchar t
90 #
91 # Outputs :
92 # The p layer p r o f i l e radarchart i n c l u d i n g headshot i f a v a i l a b l e
93 ##############
94

95 # Indexes the p laye r in the dataframe by name
96 p layer . i n d i c e s <− which ( df $ ‘ Player Name‘ == poi )
97 s t o p i f n o t ( l ength ( p laye r . i n d i c e s ) !=0) # i n d i c a t e s p laye r name did not

match
98

99 # Get the axes l i m i t s
100 min . row <− df %>% s e l e c t (− ’ Player Name ’ ) %>% apply (2 , min ) %>% t
101 max . row <− df %>% s e l e c t (− ’ Player Name ’ ) %>% apply (2 , max) %>% t
102

103 # Remove a l l rows except that o f the p laye r o f i n t e r e s t
104 df %<>% f i l t e r ( ‘ Player Name‘==poi ) %>% s e l e c t (− ‘ Player Name ‘ ) %>% head

(1)
105

106 rbind (max . row ,
107 min . row ,
108 df ) %>% ### TODO: choose p laye r by year too , not j u s t name
109 radarchart (# Polygon cus tomisa t i on
110 pco l = colour ,
111 p f c o l = s c a l e s : : alpha ( co lour , 0 . 5 ) ,
112 plwd = 2 ,
113 p l ty = 1 ,
114 # Grid cus tomisa t i on
115 c g l c o l = ’ grey ’ ,
116 c g l t y = 1 ,
117 cglwd = 0 . 8 ,
118 # Axis cus tomisat i on
119 #a x i s l a b c o l = ’ grey ’ ,
120 # Var iab le l a b e l s
121 v l cex = vlcex , v l a b e l s = v labe l s ,
122 c a x i s l a b e l s = c a x i s l a b e l s , t i t l e = t i t l e , . . .
123 )
124

125 # Attempt to download the headshot image o f the p laye r
126 tryCatch ({
127 headshot . img <− get headshot u r l ( po i ) %>% getURLContent %>% readPNG
128 # Coordinates o f the headshot
129 x0 <− 1
130 y0 <− 0 .4
131 x1 <− x0 + 0 .8
132 y1 <− y0+0.9
133

134 # Render the headshot
135 raster Image ( headshot . img , x l e f t = x0 , ybottom = y0 , x r i gh t = x1 , ytop =

y1 )
136 } , e r r o r= func t i on ( e ) message ( ’ Could not r e t r i e v e r e sou r c e from the

i n t e r n e t ’ ) )
137

138 }
139

140 # Plo t t i ng func t i on f o r producing PC1 v PC2 p l o t s
141 pc . p l o t . func <− f unc t i on (p , dim ) {
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142

143 ##############
144 # Inputs :
145 # − p : a ggp lo t p l o t s p e c i f y i n g the axes o f the p l o t
146 # − dim : the name o f the g o l f i n g dimension the PCA was conducted on
147 #
148 # Returns :
149 # An i n t e r a c t i v e p l o t l y v i s u a l i s a t i o n o f the input ggp lot
150 ##############
151

152 g g p l o t l y (p + geom point ( aes ( t ex t=s p r i n t f ( ’%s ’ , ‘ Player Name ‘ ) ) ) ,
153 t o o l t i p = c ( ’ t ex t ’ ) ) %>% # Set t o o l t i p to only d i s p l a y the ’ text

’ a e s t h e t i c
154 add annotat ions (
155 t ex t = dim ,
156 x = 0 ,
157 y = 1 ,
158 y r e f = ” paper ” ,
159 x r e f = ” paper ” ,
160 xanchor = ” l e f t ” ,
161 yanchor = ”top ” ,
162 y s h i f t = 20 ,
163 showarrow = FALSE,
164 f ont = l i s t ( s i z e = 15)
165 )
166 }
167

168 polygon . p l o t . func <− f unc t i on ( p1 , p2 , p3 ) {
169 x11 ( )
170 par (mar=c (3 , 3 , 1 , 1 ) )
171 p lo t (1 , 1 , yl im=c ( −1.5 ,3) , xl im=c ( −2.5 ,3) , t=”n” , xlab=”” , ylab=”” )
172 polygon ( p1$X, p1$Y, border =2)
173 polygon ( p2$X, p2$Y)
174 polygon ( p3$X, p3$Y, c o l=rgb ( 0 , 0 , 1 , 0 . 2 ) )
175 }

src/utils/data vis.R

1 #############################################
2 # This f i l e conta in s f u n c t i o n s and o b j e c t s #
3 # used in the course r a t i n g a n a l y s i s . #
4 #############################################
5 l i b r a r y (pacman)
6

7 # Regular exp r e s s i on f o r improving search query
8 rexpr <−
9 paste ( ’The ’ ,

10 ’ Co l l ege ’ ,
11 ’ Un ive r s i ty ’ ,
12 ’ Gol f ’ ,
13 ’ Club ’ ,
14 ’ Course ’ ,
15 ’ Country ’ ,
16 ’ Beach ’ ,
17 ’ . ∗@’ , # Everything be f o r e an @ symbol
18 ’ \\ ( . ∗ ’ , # Everything a f t e r an open bracket
19 ’ \\bat \\b ’ , # at ( whole word matching )
20 ’ \\ bof \\b ’ , # o f ( whole word matching )
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21 ’ \\band\\b ’ , # and ( whole word matching )
22 ’ \\b(G|C) \\ . ?C\\ . ?\\b ’ , # matches GC or G.C. or CC or C.C ( whole

word matching )
23 # This l i t t l e beauty uses negat ive lookbehind :
24 # Will match a − f o l l owed by anything as long as i t i s not preceded

by a two− l e t t e r word at the s t a r t o f the l i n e
25 ’ (?< ! ˆ\\w{2}) −.∗ ’ ,
26 sep=’ | ’ )
27

28 # Appl ies rexpr to each coursename in a vec to r
29 c l ean course name <− f unc t i on ( x ) {
30 ##############
31 # Inputs :
32 # − x : vec to r o f coursenames
33 #
34 # Returns :
35 # A vector o f shortened coursenames
36 ##############
37 x %>%
38 gsub ( rexpr , ’ ’ , . ,
39 i gno r e . case = TRUE,
40 p e r l=TRUE) %>%
41 # Remove extra whitespace
42 gsub ( ’ {2 ,}? |ˆ +| +$ ’ , ’ ’ , . )
43 }
44

45 # Filenames o f the c o l l e g e master data
46 course . f i l enames <− c ( ’ master − NCAA Men . csv ’ , ’ master − NCAA Women. csv ’ )
47

48 # Function f o r read ing the c o l l e g e g o l f e r data
49 read . c o l l e g e <− f unc t i on ( fname , . . . ) {
50 ##############
51 # Inputs :
52 # − fname : name o f the c o l l e g e master f i l e
53 # − . . . : a d d i t i o n a l args passed to f r ead
54 #
55 # Returns :
56 # A cleaned dataframe o f c o l l e g e g o l f e r tournament s t a t s
57 ##############
58

59 # Read f i l e
60 f r ead ( f i l e=paste0 ( ’ . . / data / course r a t i n g / ’ , fname ) , . . . ) %>%
61 # Clean up
62 mutate ( venue=gsub ( ’ ˆ . ∗</?span> ’ , ’ ’ , venue ) ,
63 venue=gsub ( ’&(amp) ? ; ? ’ , ’ ’ , venue ) )
64 }

src/utils/rating utils.R

1 ###################################################################
2 # This f i l e conta in s f u n c t i o n s and cons tant s used f o r read ing in #
3 # the data and pre−p r o c e s s i n g i t us ing d i f f e r e n t v a r i a b l e s #
4 ###################################################################
5 l i b r a r y (pacman)
6 p load ( data . tab le , r j s o n )
7

8 # A column s e l e c t i o n func t i on that takes a l l the ( averaged ) metr i c s
p o s s i b l e from the datase t
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9 a l l averages <− f unc t i on ( df ) {
10

11 ##############
12 # Input :
13 # − df : the dataframe o f pga tour p laye r s t a t s
14 #
15 # Returns :
16 # the dataframe with a l l averaged metr i c s inc luded
17 ##############
18

19 cat ( ’ Using a l l columns with %, Shots Gained , and l o t s o f other terms\n ’ )
20 df %>%
21 s e l e c t ( ‘ Player Name‘ , Date ,
22 # S e l e c t only numeric columns
23 where ( i s . numeric ) &
24 # That conta in c e r t a i n terms in t h e i r name ( d e f a u l t f o r conta in s ( )

i s case i n s e n s i t i v e )
25 ( conta in s ( ’%’ ) |
26 ( conta in s ( ’SG ’ ) & conta in s ( ’AVERAGE’ ) ) |
27 ( conta in s ( c ( ’ Driv ’ , ’ Fairway ’ , ’GIR ’ , ’ Sandsaves ’ , ’ B i rd i e ’ , ’

Par ’ , ’ Bogey ’ , ’ Putt ’ , ’ Green ’ , ’ Approach ’ ) ) & conta in s ( ’AVG’
) )

28 ) )
29 }
30

31

32 # This func t i on reads the j son f i l e conta in ing the columns to be used in
the a n a l y s i s

33 # and subse t s the dataframe to inc lude only these columns
34 benchmark vars <− f unc t i on ( df , j s on . f i l e p a t h=’ . . / data / v a r i a b l e name d i c t .

j s on ’ ) {
35

36 ##############
37 # Inputs :
38 # − df : the dataframe o f pga tour p laye r s t a t s
39 # − j s on . f i l e p a t h : f i l e p a t h to the j son f i l e o f v a r i a b l e names
40 #
41 # Returns :
42 # the dataframe with a l l a v a i l a b l e columns from the j son f i l e inc luded
43 #
44 ##############
45

46 # Check i f the j son v a r i a b l e s have a l r eady been read from f i l e
47 i f ( ! e x i s t s ( ’ j s on . vars ’ ) ) {
48 j s on . vars <<− fromJSON( f i l e=j son . f i l e p a t h ) %>% lapp ly ( u n l i s t ) # Double

arrow w r i t e s to g l o b a l scope
49 }
50 # Extract columns and only keep those that are a l s o pre sent in the

datase t
51 c o l s <− c ( ’ Player Name ’ , u n l i s t ( j son . vars , use . names = FALSE) )
52 c o l s <− subset ( co l s , c o l s %in% colnames ( df ) )
53 # Subset the dataframe with the s p e c i f i e d columns
54 df %>% s e l e c t ( a l l o f ( c o l s ) )
55

56 }
57

58 # This func t i on subse t s the dataframe by a g o l f i n g dimension ( or
combination o f dimensions )
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59 subset by dim <− f unc t i on ( df ,
60 dimensions=c ( ’ General ’ , ’ Dr iv ing ’ , ’ Putt ing ’ , ’

Long . game ’ , ’ Short . game ’ ) ,
61 sg . vars=TRUE,
62 amateur=FALSE) {
63

64 ##############
65 # Inputs :
66 # − df : the dataframe o f pga tour p laye r s t a t s
67 # − dimensions : the g o l f i n g dimension ( s ) to subset . can choose mu l t ip l e
68 # − sg . vars : s e t to FALSE i f s t r o k e s gained v a r i a b l e s should be dropped
69 # − amateur : s e t to TRUE i f read ing the amateur IoG data , FALSE f o r the

PGA TOUR data
70 #
71 # Returns :
72 # the dataframe conta in ing only v a r i a b l e s from the s p e c i f i e d g o l f i n g

dimension ( s )
73 #
74 ##############
75

76 dimensions <− match . arg ( dimensions , s e v e r a l . ok = TRUE)
77

78 # Dataframe conta in s amateur data and columns
79 i f ( amateur ) {
80 # Changes made to the o r i g i n a l . csv f i l e : rename p layer column and GIR

column , remove the d u p l i c a t e 3 putt ra t e columns
81 # Renamed SG: Approaches to SG: Approaches ( from >100 yards )
82 # Renamed the putt ing and shor t game columns too ( they were per shot )
83

84 # Retr i eve v a r i a b l e s from the j son f i l e
85 p layer . c o l s <− c ( ’ Player Name ’=’ Player Name ’ , u n l i s t ( j son . vars [

d imensions ] ) ) %>%
86 subset ( . , . != ’ ’ ) %>% # Remove empty ones
87 names %>% # Get the keys ra the r than the va lue s
88 # Remove the pre−pended category names
89 gsub ( ’ ˆ( General | Driving | Putting | Long . game | Short . game) . ’

, ’ ’ , . , i gno r e . case = TRUE)
90

91 i n t e r s e c t i n g . c o l s <− p layer . c o l s %in% colnames ( df ) # Columns that are
a c t u a l l y in the data frame

92 dropped . c o l s <− p layer . c o l s [ ! i n t e r s e c t i n g . c o l s ] # Columns that do not
appear in dataframe ( but should )

93 # Warn about dropped columns
94 i f ( l ength ( dropped . c o l s )>0) {
95 paste0 ( dropped . co l s , c o l l a p s e = ’ \n ’ ) %>%
96 s p r i n t f ( ’ Warning : amateur data conta ined %i miss ing columns :\n%s \n\

n ’ , l ength ( dropped . c o l s ) , . ) %>%
97 message ( )
98 }
99

100 # Only keep columns that are i n s i d e the dataframe
101 p layer . c o l s <− subset ( p laye r . co l s , i n t e r s e c t i n g . c o l s )
102

103 # Construct columns f u l l o f z e r o s to r e p l a c e the ones that have been
dropped

104 spare . c o l s <− matrix (0 , nrow=nrow ( df ) , nco l=length ( dropped . c o l s ) ) %>%
105 as . data . frame ( )
106 colnames ( spare . c o l s ) <− dropped . c o l s
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107

108 # Subset the columns and append any miss ing ones
109 df <− df %>% s e l e c t ( a l l o f ( p laye r . c o l s ) ) %>%
110 cbind ( spare . c o l s )
111

112

113 } e l s e { # Not us ing amateur data
114 # Get columns from json f i l e
115 c o l s <− c ( ’ Player Name ’ , u n l i s t ( j son . vars [ d imensions ] ) )
116 # Get only the c o l s that are conta ined in the dataframe
117 c o l s <− subset ( co l s , c o l s %in% colnames ( df ) )
118 names ( c o l s ) <− names ( c o l s ) %>%
119 # Remove pre−pended g o l f i n g dimension name
120 gsub ( ’ ˆ( General | Driving | Putting | Long . game | Short .

game) . ’ , ’ ’ , . , i gno r e . case = TRUE)
121

122 # S e l e c t only the matched columns
123 df <− df %>% s e l e c t ( a l l o f ( c o l s ) )
124 }
125

126 i f ( ! sg . vars ) {
127 df <− df %>% s e l e c t ( ! conta in s ( ’SG ’ ) )
128 }
129

130 re turn ( df )
131

132 }

src/utils/read data.R

1 −−−
2 t i t l e : ” C lus t e r Ana lys i s ”
3 author : ” jo sh atwal ”
4 output : html document
5 date : ” ‘ r format ( Sys . time ( ) , ’%d %B, %Y, %H:%M’ ) ‘ ”
6 kn i t : ( f unc t i on ( inputF i l e , encoding ) {
7 rmarkdown : : render ( inputF i l e ,
8 encoding=encoding ,
9 output f i l e=f i l e . path ( dirname ( i n p u t F i l e ) , ’ . . ’ , ’

output ’ , ’ c l u s t e r . html ’ ) ) })
10 −−−
11

12 ‘ ‘ ‘{ r setup , i n c lude=FALSE}
13 k n i t r : : opts chunk$ s e t ( echo = FALSE, warning = FALSE, message = FALSE)
14 l i b r a r y (pacman)
15 p load ( t idyve r s e , magr ittr , ClusterR , p l o t l y , PBSmapping , c l u s t e r ,

f a c toex t ra , gr idExtra )
16 source ( ’ u t i l s / data v i s .R ’ )
17 s e t . seed (0 )
18

19 # SET THIS VARIABLE TO SG TO EVALUATE CLUSTERING ON SG RATHER THAN PC
VARIABLES

20 var . s e t <− ’PC ’
21 cat ( s p r i n t f ( ’ Using %s v a r i a b l e s \n ’ , var . s e t ) )
22

23 # Shorthand v a r i a b l e subset func t i on
24 s e l e c t vars <− f unc t i on ( df ,
25 var . s e t = c ( ’SG ’ , ’PC ’ ) ,
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26 i n c lude . rank=TRUE) {
27 ##############
28 # Input :
29 # − df : the dataframe o f pga tour p laye r s t a t s
30 # − var . s e t : subset f o r the SG or the PC v a r i a b l e s
31 # − i n c lude . rank : s e t to FALSE i f rank column should be dropped
32 #
33 # Returns :
34 # A dataframe conta in ing the d e s i r e d v a r i a b l e s
35 ##############
36

37 var . s e t <− match . arg ( var . s e t )
38 i f ( var . s e t == ’SG ’ ) {
39 df <− df %>%
40 s e l e c t ( ’ Player Name ’ , rank , conta in s ( ’SG ’ ) ) %>%
41 rename with ( ˜gsub ( ’SG: ’ , ’ ’ , . x ) ) # Rename the v a r i a b l e s
42 } e l s e {
43 df <− df %>%
44 s e l e c t ( ! conta in s ( ’SG ’ ) )
45 }
46

47 i f ( ! i n c lude . rank ) {
48 df <− df %>% s e l e c t (−rank )
49 }
50

51 re turn ( df )
52 }
53

54 # Resca l e s numeric va lue s to s t a r t g l o b a l l y from 0 , and f o r each p laye r
d i v id e by the t o t a l va lue

55 r e s c a l e p laye r <− f unc t i on ( df ) {
56

57 ##############
58 # Input :
59 # − df : the dataframe o f pga tour p laye r s t a t s
60 #
61 # Returns :
62 # A dataframe where every p laye r has been s c a l e d such that t h e i r met r i c s

have mean 0 and std . 1
63 ##############
64

65 # Store the non−numeric columns
66 ext ra . c o l s <− df %>% s e l e c t ( ! where ( i s . double ) )
67

68 # Drop the non−numeric columns
69 df <− df %>% s e l e c t ( where ( i s . double ) )
70

71 # Normalise each row to have mean 0 and std . 1
72 df %>%
73 apply (1 , f unc t i on ( x ) {
74 x <− x − mean( x )
75 x/ s q r t ( var ( x ) )
76

77 }) %>%
78 t ( ) %>%
79 cbind ( ext ra . co l s , . )
80

81 }
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82

83

84 ‘ ‘ ‘
85

86

87 Only p l a ye r s with rank < 250 are kept f o r the c l u s t e r i n g a n a l y s i s
88

89 ‘ ‘ ‘{ r }
90 # Read output o f PCA. rmd
91 fpath <− ’ . . / data /pc data . rds ’
92 pc . df <− readRDS( fpath ) %>% s e l e c t ( ! conta in s ( ’ 2 ’ ) )
93

94 # Read o f f i c i a l g o l f rank ings
95 fpath <− ’ . . / data /owgr . csv ’
96 tryCatch ({
97 owgr <− read . csv ( fpath )
98 } , e r r o r = func t i on ( e ) {
99 ’ Could not f i n d the data f i l e at %s . Please download the data from http

: //www. owgr . com/ ranking .\n ’ %>%
100 s p r i n t f ( fpath ) %>% stop
101 } ,
102 f i n a l l y = {
103 pc . df <− owgr %>% mutate ( ’ Player Name ’=s p r i n t f ( ’%s %s ’ , F i r s t . Name,

Last .Name) ,
104 rank=End .2020 ) %>% # Using rank ings at the end o f

2020
105 # TODO: get the rank ings

dynamical ly in s t ead o f us ing
the p r e v i o u s l y downloaded f i l e

106 s e l e c t ( ’ Player Name ’ , rank ) %>%
107 r i g h t j o i n ( pc . df , by=’ Player Name ’ )
108 })
109

110

111 # REMOVE PLAYERS WITH RANK >= 200
112 pc . df %<>% f i l t e r ( rank < 250)
113

114

115 pc . d i s t <− pc . df %>% s e l e c t vars ( var . s e t ) %>%
116 r e s c a l e p laye r ( ) %>%
117 s e l e c t ( where ( i s . double ) ) %>%
118 d i s t ( )
119

120 ‘ ‘ ‘
121

122 ## Normalised p laye r va lue s
123 ‘ ‘ ‘{ r }
124

125 pc . df %>% s e l e c t vars ( var . set , i n c lude . rank=FALSE) %>%
126 f i l t e r ( ‘ Player Name‘== ’ Bryson DeChambeau ’ ) %>%
127 r e s c a l e p laye r ( )
128

129 ‘ ‘ ‘
130

131 # K−Means C lu s t e r i ng
132

133 Note that box p l o t s use the transformed ( normal i se each p l a ye r s met r i c s )
data
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134

135 ‘ ‘ ‘{ r }
136 # K−Means C lu s t e r i ng
137 run kMeans <− f unc t i on ( df , K, N=1, p r i n t . output=TRUE, t i t l e=NULL) {
138

139 ##############
140 # Input :
141 # − df : a dataframe o f p l ay e r s conta in ing e i t h e r the SG or PC v a r i a b l e s

f o r each g o l f i n g dimension
142 # − K: the number o f c l u s t e r s to f i t
143 # − N: the number o f r e p l i c a t e s to perform
144 # − pr in t . output : s e t to FALSE to d i s a b l e p r i n t i n g o f output t a b l e s and

p l o t s
145 # − t i t l e : s e t s the t i t l e o f the generated p lo t
146 #
147 # Outputs :
148 # − The top ranked p l a ye r s in each c l u s t e r
149 # − A boxplot d i s p l a y i n g the s t a t d i s t r i b u t i o n o f p l a ye r s in each c l u s t e r
150 #
151 # Returns :
152 # A l i s t with two elements :
153 # − df : the o r i g i n a l dataframe with a new column s p e c i f y i n g which c l u s t e r

each p laye r was as s i gned to
154 # − c l u s t e r s : the ob j e c t returned by kmeans ( ) , can be used to e x t r a c t the

c l u s t e r c e n t r o i d s
155 ##############
156

157 # Compute c l u s t e r s N number o f t imes and aggregate the r e s u l t s
158 c l u s t e r . matrix <− l app ly ( 1 :N, func t i on ( i ) {
159 c l u s t e r i n g <− df %>% s e l e c t ( where ( i s . double ) ) %>% kmeans (K, n s t a r t =

200)
160 c l u s t e r i n g $ c l u s t e r
161 }) %>% do . c a l l ( cbind , . )
162

163 # Choose c l u s t e r i n g with l a r g e s t average s i l h o u e t t e va lue
164 best . index <− c l u s t e r . matrix %>%
165 apply (2 , f unc t i on ( c l u s t e r i n g ) {
166

167 # F i r s t column o f s i s the c l u s t e r i n g
168 # Second columns o f s i s the neighbour
169 # Third column o f s i s the s i l h o u e t t e width
170 s i l h o u e t t e ( c l u s t e r i n g , pc . d i s t ) [ , 3 ] %>% mean ( )
171 }) %>%
172 which . max( )
173

174 best . c l u s t e r <− c l u s t e r . matrix [ , bes t . index ]
175

176 df %<>% mutate ( c l u s t e r=best . c l u s t e r ) %>% r e l o c a t e ( ’ c l u s t e r ’ ) %>% r e l o c a t e
( ’ Player Name ’ )

177

178 # Display the top ranked p l a ye r s in each c l u s t e r
179 i f ( p r i n t . output ) {
180 f o r ( i in 1 :K) {
181 df %>%
182 f i l t e r ( c l u s t e r==i ) %>%
183 arrange ( rank ) %>%
184 s e l e c t ( ’ Player Name ’ , ’ c l u s t e r ’ , ’ rank ’ ) %>%
185 head ( ) %>%
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186 show ( )
187 }
188

189 df %>%
190 s e l e c t (− ‘ Player Name‘ , −rank ) %>%
191 gather ( ’ Metric ’ , ’ Value ’ , −c l u s t e r ) %>%
192 mutate ( c l u s t e r=s p r i n t f ( ’ C lus te r %i ’ , c l u s t e r ) ,
193 Metric=gsub ( ’ \\ . ’ , ’ ’ , Metric ) ) %>%
194 ggp lot ( aes ( f a c t o r ( Metric ,
195 l e v e l=c ( ’ Driv ing ’ , ’ Long game ’ , ’ Short game ’ , ’

Putt ing ’ ) ) ,
196 Value ) ) +
197 geom boxplot ( ) +
198 f a c e t wrap ( ˜ c l u s t e r ) +
199 g g t i t l e ( t i t l e ) +
200 theme ( a x i s . t i t l e . x = element blank ( ) ) −> p
201 pr in t (p)
202 }
203

204

205 re turn ( df )
206 }
207

208

209 ‘ ‘ ‘
210

211 ## K=6
212

213 ‘ ‘ ‘{ r , f i g . width=10}
214

215 pc . df %>%
216 s e l e c t vars ( var . s e t ) %>%
217 r e s c a l e p laye r ( ) %>%
218 run kMeans (6 , N=5000 , t i t l e=s p r i n t f ( ’%s Vars ’ , var . s e t ) ) −> k6
219

220 k6 %>% group by ( c l u s t e r ) %>% dplyr : : summarise ( median ( rank ) )
221

222 s i l h o u e t t e ( k6$ c l u s t e r , pc . d i s t ) %>%
223 f v i z s i l h o u e t t e ( )
224 ‘ ‘ ‘
225

226 ## K=5
227

228 ‘ ‘ ‘{ r }
229

230 pc . df %>%
231 s e l e c t vars ( var . s e t ) %>%
232 r e s c a l e p laye r ( ) %>%
233 run kMeans (5 , N=5000 , t i t l e=s p r i n t f ( ’%s Vars ’ , var . s e t ) ) −> k5
234

235 k5 %>% group by ( c l u s t e r ) %>% dplyr : : summarise ( median ( rank ) )
236

237 s i l h o u e t t e ( k5$ c l u s t e r , pc . d i s t ) %>%
238 f v i z s i l h o u e t t e ( )
239 ‘ ‘ ‘
240

241 ## K=4
242
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243 ‘ ‘ ‘{ r }
244

245 pc . df %>%
246 s e l e c t vars ( var . s e t ) %>%
247 r e s c a l e p laye r ( ) %>%
248 run kMeans (4 , N=5000 , t i t l e=s p r i n t f ( ’%s Vars ’ , var . s e t ) ) −> k4
249

250 k4 %>% group by ( c l u s t e r ) %>% dplyr : : summarise ( median ( rank ) )
251

252 s i l h o u e t t e ( k4$ c l u s t e r , pc . d i s t ) %>%
253 f v i z s i l h o u e t t e ( )
254 ‘ ‘ ‘
255

256

257 ## K=3
258

259 ‘ ‘ ‘{ r , f i g . width=10}
260 pc . df %>%
261 s e l e c t vars ( var . s e t ) %>%
262 r e s c a l e p laye r ( ) %>%
263 run kMeans (3 , N=5000 , t i t l e=s p r i n t f ( ’%s Vars ’ , var . s e t ) ) −> k3
264

265 s i l h o u e t t e ( k3$ c l u s t e r , pc . d i s t ) %>%
266 f v i z s i l h o u e t t e ( )
267 ‘ ‘ ‘
268

269 ## K=2
270

271

272 ‘ ‘ ‘{ r }
273 pc . df %>%
274 s e l e c t vars ( var . s e t ) %>%
275 r e s c a l e p laye r ( ) %>%
276 run kMeans (2 , N=5000 , t i t l e=s p r i n t f ( ’%s Vars ’ , var . s e t ) ) −> k2
277

278 s i l h o u e t t e ( k2$ c l u s t e r , pc . d i s t ) %>%
279 f v i z s i l h o u e t t e ( )
280 ‘ ‘ ‘
281

282

283

284

285

286 ## Player P r o f i l e s
287

288 ‘ ‘ ‘{ r }
289

290 f o r ( po i in c ( ’ Dustin Johnson ’ , ’ Cameron Champ ’ , ’ Tiger Woods ’ , ’ Rory
McIlroy ’ , ’ Bryson DeChambeau ’ ) ) {

291 # Raw unsca led SG v a r i a b l e s f o r comparison
292 pc . df %>%
293 s e l e c t vars ( ’SG ’ , i n c lude . rank=FALSE) %>%
294 g o l f chart ( poi , t i t l e=s p r i n t f ( ’ Unscaled SG vars − %s ’ , po i ) )
295

296 # Normalised SG or PC v a r i a b l e s to ad jus t f o r p laye r a b i l i t y
297 pc . df %>%
298 s e l e c t vars ( var . set , i n c lude . rank=FALSE) %>%
299 r e s c a l e p laye r ( ) %>%
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300 g o l f chart ( poi ,
301 t i t l e=s p r i n t f ( ’%s %s Player P r o f i l e ’ , var . set , po i ) )
302

303 }
304

305 ‘ ‘ ‘
306

307

308 ## Summary
309

310 ‘ ‘ ‘{ r }
311 # Plot o f the p l a ye r s and t h e i r c l u s t e r us ing d r i v i n g and putt ing
312 k4 %>% mutate ( c l u s t e r=as . f a c t o r ( c l u s t e r ) ) %>%
313 r e s c a l e p laye r ( ) %>%
314 h i g h l i g h t key ( key= ˜ ‘ Player Name‘ , ” Player Name” ) %>%
315 ggp lot ( aes ( Putting , Driving , c o l=c l u s t e r , s i z e =1/ ( rank+10) ) ) −>

p
316 g g p l o t l y (p +
317 geom point ( aes ( t ex t=s p r i n t f ( ’%s \nRank : %i ’ , ‘ Player Name‘ , rank )

) ) +
318 s c a l e co l our d i s c r e t e ( )+
319 l ab s ( t i t l e=’ Driv ing vs Putt ing ’ ) +
320 theme ( panel . background = element blank ( ) ) ,
321 t o o l t i p = c ( ’ t ex t ’ ) ) %>%
322 h i g h l i g h t ( on=’ p l o t l y c l i c k ’ , c o l o r=’ red ’ , opacityDim = 0 . 1 , s e l e c t i z e =

TRUE)
323

324

325 # Plot o f the p l a ye r s and t h e i r c l u s t e r us ing long game and shor t game
326 k4 %>% mutate ( c l u s t e r=as . f a c t o r ( c l u s t e r ) ) %>%
327 r e s c a l e p laye r ( ) %>%
328 h i g h l i g h t key ( key= ˜ ‘ Player Name‘ , ” Player Name” ) %>%
329 ggp lot ( aes ( Short . game , Long . game , c o l=c l u s t e r , s i z e =1/ ( rank+10)

) ) −> p
330 g g p l o t l y (p +
331 geom point ( aes ( t ex t=s p r i n t f ( ’%s \nRank : %i ’ , ‘ Player Name‘ , rank )

) ) +
332 s c a l e co l our d i s c r e t e ( )+
333 l ab s ( t i t l e=’ Long vs Short game ’ ) +
334 theme ( panel . background = element blank ( ) ) ,
335 t o o l t i p = c ( ’ t ex t ’ ) ) %>%
336 h i g h l i g h t ( on=’ p l o t l y c l i c k ’ , c o l o r=’ red ’ , opacityDim = 0 . 1 , s e l e c t i z e =

TRUE)
337

338 ‘ ‘ ‘
339

340 ## Pair s p l o t
341

342 ‘ ‘ ‘{ r , f i g . width =12, f i g . he ight =12}
343 k4 . data <− k4 %>% mutate ( c l u s t e r=as . f a c t o r ( c l u s t e r ) ,
344 s i z e =1/ ( rank+10) ) %>%
345 r e s c a l e p laye r ( )
346

347

348 p l o t f n <− f unc t i on ( axes ) {
349 sp <− s t r s p l i t ( axes , ’ ’ ) [ [ 1 ] ]
350 xdim <− sp [ 1 ]
351 ydim <− sp [ 2 ]
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352

353 p <− ggp lot ( k4 . data ,
354 aes s t r i n g ( xdim , ydim ,
355 c o l=’ c l u s t e r ’ ,
356 s i z e=’ s i z e ’ ) ) +
357 geom point ( show . legend = FALSE) +
358 s c a l e co l our d i s c r e t e ( )+
359 l ab s ( t i t l e=’ ’ , x=’ ’ , y=’ ’ ) +
360 theme ( panel . background = element blank ( ) ,
361 a x i s . t i c k s = element blank ( ) ,
362 a x i s . t ex t = element blank ( ) )
363

364 re turn (p)
365 }
366

367

368 c ( ’ Dr iv ing Driv ing ’ ,
369 ’ Long . game Driv ing ’ ,
370 ’ Short . game Driv ing ’ ,
371 ’ Putt ing Driv ing ’ ,
372 ’ Dr iv ing Long . game ’ ,
373 ’ Long . game Long . game ’ ,
374 ’ Short . game Long . game ’ ,
375 ’ Putt ing Long . game ’ ,
376 ’ Dr iv ing Short . game ’ ,
377 ’ Long . game Short . game ’ ,
378 ’ Short . game Short . game ’ ,
379 ’ Putt ing Short . game ’ ,
380 ’ Dr iv ing Putt ing ’ ,
381 ’ Long . game Putting ’ ,
382 ’ Short . game Putting ’ ,
383 ’ Putt ing Putt ing ’ ) %>%
384 l app ly ( func t i on ( x ) p l o t f n ( x ) ) −> myGrobs
385

386

387 g r id . arrange ( grobs=myGrobs , nrow=4, nco l =4)
388

389

390

391

392 ‘ ‘ ‘
393

394

395

396 ## New Data
397

398 ‘ ‘ ‘{ r }
399 # Read proces sed amateur data f i l e from PCA. rmd output
400 fpath <− ’ . . / data /amateur pc .RDS ’
401

402 pc . amateur <− readRDS( fpath ) %>%
403 s e l e c t ( ! conta in s ( ’ 2 ’ ) )
404

405 i f ( var . s e t==’SG ’ ) {
406 pc . amateur <− pc . amateur %>% s e l e c t ( ’ Player Name ’ , conta in s ( ’SG ’ ) ) %>%
407 r e l o c a t e ( ’ Player Name ’ , ’SG: Driv ing ’ , ’

SG: Putt ing ’ , ’SG: Short . game ’ ) # Re
order columns
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408 } e l s e {
409 pc . amateur <− pc . amateur %>% s e l e c t ( ! conta in s ( ’SG ’ ) )
410 }
411

412 pc . amateur <− pc . amateur %>% r e s c a l e p laye r ( )
413

414 # Join amateur data on to pro datase t
415 pc . amateur . pro <− pc . df %>% f u l l j o i n ( pc . amateur ) %>%
416 s e l e c t vars ( var . s e t ) %>%
417 r e s c a l e p laye r ( )
418 ‘ ‘ ‘
419

420 ### Recommendation
421

422

423 ‘ ‘ ‘{ r }
424 # Stat s s p e c i f i c a l l y f o r f i r s t p laye r in amateur datase t
425 aaron <− pc . amateur %>% s e l e c t ( ! conta in s ( ’ 2 ’ ) , − ’ Player Name ’ ) %>% head (1)

%>% as . numeric ( )
426

427 # Used to ad jus t a l l va lue s to be non−negat ive when c a l c u l a t i n g polygons
428 data . min <− pc . amateur . pro %>% s e l e c t ( where ( i s . double ) ) %>% min ( na . rm=TRUE)
429 data . min <− data . min − 0 .1 # Add 0 .1 j u s t to avoid having 0 in datase t
430 aaron <− aaron − data . min
431

432 ###### Distance f u n c t i o n s ######
433 L1 norm <− f unc t i on ( x ) sum( abs ( ( x−aaron ) ) )
434 L2 norm <− f unc t i on ( x ) sum ( ( x−aaron ) ˆ2)
435 # This func t i on f i n d s p l ay e r s who have the same r e l a t i v e o rde r ing o f s t a t s
436 same order <− f unc t i on ( x ) abs (sum( order ( x )−order ( aaron ) ) )
437

438 # Find pro p l ay e r s with the same r e l a t i v e o rde r ing o f s t a t s
439 order . d i s t <− pc . amateur . pro %>% f i l t e r ( ‘ Player Name‘ !=’ Aaron Small ’ ) %>%
440 # TODO: d i s t anc e only c a l c u l a t e d on PC v a r i a b l e s at the

moment
441 s e l e c t vars ( var . s e t ) %>%
442 s e l e c t ( where ( i s . double ) ) %>%
443 as . matrix ( ) %>%
444 apply (1 , same order )
445

446 # This func t i on r e tu rn s a d i s t anc e metr ic based on the area o f the two
drawn polygons

447 polygon over lap <− f unc t i on (x , p l o t . poly=FALSE) {
448

449 ##############
450 # Input :
451 # − x : a vec to r o f l ength 4 conta in ing a p r o f e s s i o n a l p layer ’ s metr ics ,

with mean 0 and std . 1
452 # they MUST be in a s p e c i f i c order : Driving , Putting , Short . game ,

Long . game
453 # − p lo t . poly : s e t to TRUE i f i t i s d e s i r e d to p l o t the polygons
454 #
455 # Computes :
456 # − i n t e r s e c t i o n . prop : polygons o f the v i s u a l r e p r e s e n t a t i o n s o f the

p laye r p r o f i l e radar char t s
457 # are cons t ruc ted f o r aaron and the pro p laye r .
458 # the propor t ion o f the i n t e r s e c t i o n that ove r l ap s

with aaron ’ s polyon i s then computed
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459 #
460 # Returns :
461 # A di s t anc e metr ic based on i n t e r s e c t i o n s . I t i s the r e c i p r o c a l o f the

sum of the propor t i ons
462 # The r e c i p r o c a l i s taken so that a l a r g e i n t e r s e c t i o n corresponds to a

smal l d i s t anc e
463 ##############
464

465 # Begin by ad ju s t i ng the input by the minimum value in the dataframe , to
make every value p o s i t i v e

466 x <− x − data . min
467

468 # This func t i on d e f i n e s a polygon that r e p r e s e n t s the v i s u a l
r e p r e s e n t a t i o n o f the p laye r p r o f i l e in the radar char t s

469 cons t ruc t poly <− f unc t i on (x , PID) {
470 data . frame (PID=rep (PID , 4 ) ,
471 POS=1:4 ,
472 X=c (0 , −x [ 2 ] , 0 , x [ 4 ] ) ,
473 Y=c ( x [ 1 ] , 0 , −x [ 3 ] , 0) )
474 }
475

476 # Pro−player ’ s polygon
477 p1 <− cons t ruc t poly (x , 1)
478 # Aaron ’ s s c a l e d polygon
479 p2 <− cons t ruc t poly ( aaron , 2)
480 # The i n t e r s e c t i o n between the two polygons
481 p3 <− j o i nPo ly s ( p1 , p2 )
482

483 # Optional polygon i n t e r s e c t i o n p lo t
484 i f ( p l o t . poly ) polygon . p l o t . func ( p1 , p2 , p3 )
485

486 # Compute the area o f the i n t e r s e c t i o n polygon / aaron ’ s polygon
487 i n t e r s e c t i o n . prop <− ca lcArea ( p3 ) $ area / ca lcArea ( p2 ) $ area
488

489 # Return the r e c i p r o c a l so that a l a r g e i n t e r s e c t i o n corresponds to a
smal l computed d i s t anc e metr ic

490 # subt rac t 1 so that i t beg ins at 0
491 (1 / i n t e r s e c t i o n . prop ) − 1
492

493 }
494

495 # Compute d i s t anc e from player o f i n t e r e s t to every pro p laye r
496 amateur . d i s t <− pc . amateur . pro %>% f i l t e r ( ‘ Player Name‘ !=’ Aaron Small ’ ) %>%
497 s e l e c t ( where ( i s . double ) ) %>%
498 as . matrix ( ) %>%
499 apply (1 , polygon over lap )
500

501

502 # Append d i s t anc e column to datase t and s o r t by d i s t anc e
503 pc . df %>% mutate ( ’ amateur . d i s t ’=amateur . d i s t , ’ o rder . d i s t ’=order . d i s t )

%>%
504 s e l e c t ( ’ Player Name ’ , ’ rank ’ , ’ amateur . d i s t ’ ) %>%
505 f i l t e r ( rank<49) %>%
506 arrange ( amateur . d i s t ) −> s i m i l a r . p l a ye r s
507

508 # Display top most s i m i l a r p l ay e r s
509 s i m i l a r . p l a ye r s %>% head (5)
510
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511 ‘ ‘ ‘
512

513 ## Evaluat ing other metr i c s us ing polygon i n t e r s e c t i o n
514 ‘ ‘ ‘{ r }
515 # L1 Norm
516

517 amateur . d i s t . L1 <− pc . amateur . pro %>% f i l t e r ( ‘ Player Name‘ !=’ Aaron Small ’ )
%>%

518 s e l e c t ( where ( i s . double ) ) %>%
519 as . matrix ( ) %>%
520 apply (1 , L1 norm)
521

522 amateur . d i s t . L2 <− pc . amateur . pro %>% f i l t e r ( ‘ Player Name‘ !=’ Aaron Small ’ )
%>%

523 s e l e c t ( where ( i s . double ) ) %>%
524 as . matrix ( ) %>%
525 apply (1 , L2 norm)
526

527 amateur . d i s t . ord <− pc . df %>% mutate ( order . d i s t=order . d i s t ) %>%
528 s e l e c t ( where ( i s . double ) ) %>%
529 as . matrix ( ) %>%
530 apply (1 , L1 norm)
531

532

533

534 other . r e c s <− pc . df %>% s e l e c t ( ’ Player Name ’ , rank ) %>%
535 mutate ( ’ amateur . d i s t . L1 ’=amateur . d i s t . L1 ,
536 ’ amateur . d i s t . L2 ’=amateur . d i s t . L2 ,
537 ’ o rder . d i s t ’=order . d i s t ,
538 ’ amateur . d i s t ’=amateur . d i s t ) %>%
539 f i l t e r ( rank<49)
540

541

542

543

544

545 other . r e c s %>% arrange ( amateur . d i s t . L1) %>% head (5) #%>% p u l l ( amateur . d i s t )
%>% mean

546 other . r e c s %>% arrange ( amateur . d i s t . L2) %>% head (5) #%>% p u l l ( amateur . d i s t )
%>% mean

547 other . r e c s %>% f i l t e r ( order . d i s t ==0) %>% arrange ( rank ) %>% head (5) %>% p u l l
( amateur . d i s t ) %>% mean

548

549 other . r e c s %>% f i l t e r ( order . d i s t ==0) %>% arrange ( amateur . d i s t . L2) %>% head
(5) %>% p u l l ( amateur . d i s t ) %>% mean

550

551 ‘ ‘ ‘
552

553

554 ‘ ‘ ‘{ r }
555 # Draw player chart o f Aaron Small ’ s s t a t s ( normal i sed )
556 poi <− ’ Aaron Small ’
557 # TODO aaron only has PC v a r i a b l e s at the moment
558 pc . amateur . pro %>%
559 s e l e c t (−rank ) %>%
560 r e s c a l e p laye r ( ) %>%
561 g o l f chart ( poi ,
562 t i t l e=’ Amateur Player P r o f i l e ’ )
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563

564 # Draw char t s f o r the top 3 most s i m i l a r p l a ye r s to Aaron
565 f o r ( po i in s i m i l a r . p l a y e r s $ ‘ Player Name ‘ [ 1 : 5 ] ) {
566 pc . df %>%
567 s e l e c t vars ( var . set , i n c lude . rank = FALSE) %>%
568 r e s c a l e p laye r ( ) %>%
569 g o l f chart ( poi ,
570 t i t l e=s p r i n t f ( ’%s Player P r o f i l e ’ , po i ) )
571

572 }
573

574 #predClus te r s <− p r e d i c t KMeans( p r e d i c t ( pca , newGolfers ) [ , 1 :N] , c l u s t e r s $
cente r s , threads = 1)

575

576 ‘ ‘ ‘

src/cluster.Rmd

1 #
########################################################################################

2 # This f i l e uses the c o l l e g e g o l f master f i l e s to get a unique l i s t o f
course names #

3 # and runs a head l e s s browser with in a docker conta ine r with RSelenium to
#

4 # dynamical ly r e t r i e v e the course r a t i n g s f o r each o f the unique cour s e s in
the f i l e . #

5 #
########################################################################################

6

7 # Refe rences :
8 # https : // docs . docker . com/ get−s t a r t e d /
9 # https : //www. lambdatest . com/ blog /run−selenium−t e s t s −in−docker /

10 # https : // cran . r−p r o j e c t . org /web/ packages /RSelenium/ v i g n e t t e s / b a s i c s . html
11 # https : // docs . r open s c i . org /RSelenium/ a r t i c l e s / docker . html
12

13 l i b r a r y (pacman)
14 p load ( RSelenium , se leniumPipes , data . tab le , t i d y v e r s e )
15 source ( ’ u t i l s / r a t i n g u t i l s .R ’ )
16

17 # Fi l epath to wr i t e output
18 course i d s . fpath <− ’ . . / data / course r a t i n g / course i d s . csv ’
19

20 # Get machine ip address
21 ip . addr <− system ( ’ i p c o n f i g ’ , i n t e r n=TRUE) %>%
22 grep ( ”IPv4” , . , va lue = TRUE) %>%
23 gsub ( ’ . ∗? ’ , ’ ’ , . )
24

25 port <− 4445
26

27 # I n s t a l l docker be f o r e running t h i s
28 s p r i n t f ( ’ docker run −d −p %i :4444 −p 5901:5900 se lenium / standalone−f i r e f o x −

debug : 2 . 5 3 . 0 ’ , port ) %>%
29 system ( ignore . s tdout = TRUE)
30

31 # I n i t i a t e browser ob j e c t
32 remDr <− remoteDriver ( remoteServerAddr=ip . addr [ 2 ] ,
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33 port=port ,
34 browser=’ f i r e f o x ’ )
35

36 Sys . s l e e p (1 )
37 remDr$open ( s i l e n t = TRUE)
38

39 # Function f o r g e t t i n g the course ID o f a course , g iven i t s name
40 getCourseID <− f unc t i on ( query ) {
41

42 ##############
43 # Inputs :
44 # − query : name o f the course to be searched
45 #
46 # Returns :
47 # A dataframe o f a l l c ou r s e s and t h e i r IDs that matched the query
48 ##############
49

50 r e s u l t . c ou r s e s <− cha rac t e r ( )
51 count <− 0
52 whi le ( l ength ( r e s u l t . c ou r s e s ) == 0) {
53 # Direc t browser to the NCRDB search page
54 remDr$ nav igate ( ” http : //ncrdb . usga . org ” )
55

56 # Find the text f i e l d f o r s p e c i f y i n g the c lub name
57 e <− remDr$ f indElement ( us ing = ’ xpath ’ ,
58 ’ // input [ @name=”txtClubName ” ] ’ )
59

60 # Search f o r the c lub name
61 e$ sendKeysToElement ( l i s t ( query , key = ” ente r ” ) )
62 # Wait f o r r e s u l t s to be returned
63 Sys . s l e e p (5 )
64

65 # Process r e s u l t s
66 r e s u l t . c ou r s e s <− remDr$ getPageSource ( ) [ [ 1 ] ] %>%
67 read html ( ) %>%
68 xml f i n d a l l ( ’ // ta b l e //a ’ )
69

70 i f ( count==0){
71 # Try shortened ve r s i o n o f query
72 query <− query %>% clean course name( query )
73

74 Sys . s l e e p (5 )
75 } e l s e i f ( count==1) re turn (NULL) # Skip to next one i f s t i l l no r e s u l t
76

77 count <− count + 1
78 }
79

80 # Get course names
81 course . names <− r e s u l t . c ou r s e s %>%
82 xml f i n d a l l ( ’ t ex t ( ) ’ ) %>%
83 as . cha rac t e r ( )
84

85 # Get course IDs
86 course . i d s <− r e s u l t . c ou r s e s %>%
87 xml f i n d a l l ( ’ @href ’ ) %>%
88 as . cha rac t e r ( ) %>%
89 regmatches ( . , regexpr ( ’ \\d+’ , . ) )
90
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91 # Return dataframe o f course names with IDs that matched the query
92 data . frame ( course=course . names , id=course . i d s )
93 }
94

95

96 # Read master f i l e s to get l i s t o f course names to be searched
97 course . f i l enames <− c ( ’ master − NCAA Men . csv ’ , ’ master − NCAA Women. csv ’ )
98 cour s e s <− l app ly ( course . f i l enames ,
99 # Function reads f i l e and e x t r a c t s the vec to r o f venues

100 f unc t i on ( fname ) {
101 # Read f i l e
102 read . c o l l e g e ( fname , s e l e c t=c ( ’ venue ’ ) ) %>%
103 # Get unique names o f g o l f c ou r s e s
104 unique ( ) %>%
105 as . data . frame ( ) %>%
106 deframe ( ) %>%
107 unique ( )
108 }) %>%
109 do . c a l l ( c , . ) %>% # bind them toge the r
110 unique ( )
111

112 # Progres s bar
113 pb = txtProgressBar ( min = 0 ,
114 max = length ( cour s e s ) ,
115 i n i t i a l = 0)
116

117 # Check i f f i l e a l r eady e x i s t s and re−use i f i t does
118 i f ( f i l e . e x i s t s ( course i d s . fpath ) ) {
119 scraped . cour s e s <− read . csv ( course i d s . fpath ,
120 c o l C l a s s e s = rep ( ’ cha rac t e r ’ , 2) )
121 } e l s e scraped . cour s e s <− data . frame ( course=charac t e r ( ) , id=charac t e r ( ) )
122

123 # Loop over course names and r e t r i e v e IDs
124 f o r ( i in 1 : l ength ( cour s e s ) ) {
125 # I f the course a l r eady has an ID , sk ip i t
126 l o c <− which ( cour s e s [ i ] == scraped . cour s e s $ course )
127 i f ( l ength ( l o c ) !=0 && ! i s . na ( scraped . cour s e s $ id [ l o c ] ) ) next
128

129 # Get the dataframe o f cour s e s and IDs returned from search r e s u l t s
130 tryCatch ( df <− getCourseID ( cour s e s [ i ] ) ,
131 # I f an e r r o r i s thrown f o r some reason , t ry j u s t r e s t a r t i n g the

browser and doing the same th ing
132 e r r o r = func t i on ( e ) {
133 message ( e$message )
134 remDr$ c l o s e
135 Sys . s l e e p (5 )
136 remDr$open ( s i l e n t = TRUE)
137

138 # Retry
139 df <− getCourseID ( cour s e s [ i ] )
140 })
141

142 # I f no ID was a v a i l a b l e , j u s t produce an empty r e s u l t f o r the course
r a t i n g

143 i f ( i s . n u l l ( df ) ) {
144 df <− data . frame ( course=cour s e s [ i ] , id=NA)
145 }
146
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147 scraped . cour s e s <− f u l l j o i n ( scraped . courses , df ,
148 by=c ( ’ course ’ , ’ id ’ ) )
149

150 setTxtProgressBar (pb , i ) # update p rog r e s s bar
151 }
152 c l o s e (pb)
153

154 # Save cour s e s with IDs
155 wr i t e . csv ( scraped . courses ,
156 f i l e=course i d s . fpath ,
157 row . names = FALSE)

src/course ID scrape.R

1 −−−
2 t i t l e : ”Course Rating Ana lys i s ”
3 author : ”Josh Atwal”
4 output : html document
5 date : ” ‘ r format ( Sys . time ( ) , ’%d %B, %Y, %H:%M’ ) ‘ ”
6 kn i t : ( f unc t i on ( inputF i l e , encoding ) {
7 rmarkdown : : render ( inputF i l e ,
8 encoding=encoding ,
9 output f i l e=f i l e . path ( dirname ( i n p u t F i l e ) , ’ . . ’ , ’

output ’ , ’ course r a t i n g . html ’ ) ) })
10

11 −−−
12

13 ‘ ‘ ‘{ r setup , i n c lude=FALSE}
14 k n i t r : : opts chunk$ s e t ( echo = TRUE, warning = FALSE, message = FALSE)
15 l i b r a r y (pacman)
16 p load ( t idyve r s e , data . t a b l e )
17

18 source ( ’ u t i l s / r a t i n g u t i l s .R ’ )
19 ‘ ‘ ‘
20

21 ‘ ‘ ‘{ r , echo=FALSE}
22 data . path <− ’ . . / data / course r a t i n g / ’
23

24 # Read in r e s u l t o f course r a t i n g scrape
25 rated . cour s e s <−
26 read . csv ( paste0 ( data . path , ’ rated cour s e s . csv ’ ) ) %>%
27 drop na ( ) %>%
28 mutate ( course . shor t=c l ean course name( course ) ) %>%
29 s e l e c t (−c ( id , course ) )
30

31 # Read SG benchmark data ( computed v ia formula )
32 sg s c ra t ch benchmark <− read . csv ( paste0 ( data . path , ” average shot s s c ra t ch .

csv ” ) , f i l e E n c o d i n g = ”UTF−8−BOM” )
33 sg pro benchmark <− read . csv ( paste0 ( data . path , ” average shot s pro . csv ” ) ,

f i l e E n c o d i n g = ”UTF−8−BOM” )
34

35

36 ‘ ‘ ‘
37

38 ‘ ‘ ‘{ r }
39 # D i s t r i b u t i o n o f course r a t i n g s
40 rated . cour s e s %>%
41 pivot l onge r ( c ( ‘ Male . Rating ‘ , ‘ Female . Rating ‘ ) ,
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42 names to = ’ Gender ’ ,
43 va lue s to = ’ Rating ’ ) %>%
44 ggp lot ( aes ( Rating , group=Gender , f i l l =Gender ) ) +
45 geom dens i ty ( alpha =0.5)
46

47

48 ‘ ‘ ‘
49

50 ‘ ‘ ‘{ r , cache=TRUE}
51 # Read master f i l e s
52 c o l l e g e <− l app ly ( course . f i l enames ,
53 # Function reads f i l e and e x t r a c t s the vec to r o f venues
54 f unc t i on ( fname ) {
55 read . c o l l e g e ( fname ) %>%
56 s e l e c t (−c ( event s t a r t date , school , s choo l seed ,

p laye r id , tournament name) ) %>%
57 mutate ( gender=i f e l s e ( g r ep l ( ’women ’ ,
58 fname ,
59 i gno r e . case = TRUE) ,
60 ’F ’ ,
61 ’M’ ) )
62 }) %>%
63 do . c a l l ( rbind , . ) # Join M and F dataframes toge the r
64

65 # Calcu la te the t o t a l par o f each course
66 t o t a l par <− c o l l e g e %>%
67 d i s t i n c t ( venue , round , hole , . keep a l l = TRUE) %>%
68 group by ( venue , round ) %>%
69 summarise ( t o t a l p a r = sum( par ) )
70

71 ‘ ‘ ‘
72

73 ## Join r a t i n g s
74

75 ‘ ‘ ‘{ r }
76 # Join r a t i n g s onto NCAA data
77 c o l l e g e . rated <−
78 i nne r j o i n ( c o l l e g e , t o t a l par ) %>%
79 mutate ( course . shor t=c l ean course name( venue ) ) %>%
80 i nne r j o i n ( rated . courses , by=’ course . shor t ’ ) %>%
81 mutate ( r a t i n g=i f e l s e ( gender==’M’ , Male . Rating , Female . Rating ) ,
82 p layer name = as . f a c t o r ( p laye r name) ,
83 course . shor t = as . f a c t o r ( course . shor t ) ,
84 gender=as . f a c t o r ( gender ) ) %>%
85 s e l e c t (−c ( Male . Rating , Female . Rating , venue ) ) %>%
86 # Remove rows where s co r e to par i s too l a r g e
87 f i l t e r ( to par < 20)
88

89 # Average r a t i n g s where rows have been dup l i ca t ed
90 c o l l e g e . rated <−
91 c o l l e g e . rated %>%
92 group by ( course . shor t ) %>%
93 summarise ( r a t i n g=mean( r a t i n g ) ) %>%
94 i nne r j o i n ( s e l e c t ( c o l l e g e . rated , −r a t i n g ) ) %>%
95 d i s t i n c t ( )
96

97 # Clean up l a r g e o b j e c t s
98 rm( c o l l e g e )
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99 rm( cour s e s )
100 gc ( r e s e t=TRUE, verbose = FALSE)
101

102 ‘ ‘ ‘
103

104 ## Dataset s t a t i s t i c s
105

106 ‘ ‘ ‘{ r , f i g . he ight =3, f i g . width=8}
107

108 # Number o f male p l a ye r s
109 c o l l e g e . rated %>% f i l t e r ( gender==’M’ ) %>% s e l e c t ( p laye r name) %>% unique

%>% nrow
110 # Number o f male p l a ye r s
111 c o l l e g e . rated %>% f i l t e r ( gender==’F ’ ) %>% s e l e c t ( p laye r name) %>% unique

%>% nrow
112

113

114 # Calcu la te number o f venues played by each p laye r
115 venues . played <−
116 c o l l e g e . rated %>%
117 s e l e c t ( p laye r name , course . short , tournament id ) %>%
118 d i s t i n c t ( ) %>%
119 group by ( p laye r name) %>%
120 summarise (n venues = n ( ) )
121

122 # Plot venues played d i s t r i b u t i o n
123 venues . played %>%
124 p u l l (n venues ) %>%
125 t a b l e %>%
126 as . data . frame ( ) %>%
127 rename ( ‘ Number o f Venues Played ‘= ’ . ’ , Count=’ Freq ’ ) %>%
128 ggp lot ( aes ( ‘ Number o f Venues Played ‘ , Count ) ) +
129 geom bar ( s t a t=’ i d e n t i t y ’ )
130

131 ‘ ‘ ‘
132

133

134 ## Re la t i on sh ip between course r a t i n g and s co r e
135

136 ‘ ‘ ‘{ r }
137 # Join number o f venues and f i l t e r p l ay e r s that havent played at more than

1
138 c o l l e g e . rated <−
139 i nne r j o i n ( c o l l e g e . rated , venues . played ) %>%
140 f i l t e r (n venues > 1) %>%
141 s e l e c t (−n venues )
142

143 # Compute s c o r e s o f p l a ye r s r e l a t i v e to s c ra t ch
144 c o l l e g e . r e l to s c ra t ch <−
145 c o l l e g e . rated %>%
146 group by ( p laye r name , course . short , round , tournament id ) %>%
147 summarise ( t o t a l s c o r e=sum( s co r e ) ) %>%
148 i nne r j o i n ( c o l l e g e . rated ) %>%
149 mutate ( r e l to s c ra t ch = ( t o t a l score−r a t i n g ) / t o t a l p a r ∗ 72)
150

151 # Plot hex p l o t
152 c o l l e g e . r e l to s c ra t ch %>%
153 d i s t i n c t ( p laye r name , course . short , round , tournament id , . keep a l l =
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TRUE) %>%
154 #f i l t e r ( t o t a l s c o r e < 100) %>%
155 ggp lot ( aes ( rat ing , t o t a l s c o r e ) ) +
156 #geom j i t t e r ( alpha =0.05) +
157 geom hex ( ) +
158 xlim ( 6 7 . 5 ,NA) +
159 geom smooth ( c o l=’ green ’ , method = ’gam ’ )+
160 l ab s ( x=’ Course Rating ’ , y=’ Total s c o r e ’ , f i l l = ’ Player \nCount ’ ) + ylim (NA

, 1 5 5 ) +
161 geom a b l i n e ( s l ope = 1 , i n t e r c e p t = 0 , l i n e t y p e=’ dashed ’ , c o l=’ red ’ )
162

163

164 ‘ ‘ ‘
165

166 ## D i s t r i b u t i o n o f p l a ye r s r e l a t i v e to s c ra t ch with q u a n t i l e s p l o t t ed
167 ‘ ‘ ‘{ r , f i g . he ight =3, f i g . width=8}
168

169 c o l l e g e . r e l to s c ra t ch <−
170 c o l l e g e . r e l to s c ra t ch %>%
171 group by ( p laye r name) %>%
172 summarise ( r e l to s c ra t ch=mean( r e l to s c ra t ch ) )
173

174 # Compute q u a n t i l e s
175 q u a n t i l e s <− c o l l e g e . r e l to s c ra t ch %>%
176 p u l l ( r e l to s c ra t ch ) %>%
177 q u a n t i l e ( c ( 0 . 1 , 0 . 2 5 , 0 . 5 , 0 . 75 , 0 . 9 ) )
178

179 q u a n t i l e s
180

181 # Plot d i s t r i b u t i o n
182 c o l l e g e . r e l to s c ra t ch %>%
183 ggp lot ( aes ( r e l to s c ra t ch ) ) +
184 geom dens i ty ( f i l l = ’ grey ’ ) +
185 xlim (NA, 3 0 ) +
186 geom v l i n e ( x i n t e r c e p t = quant i l e s , l i n e t y p e=’ dotted ’ ) +
187 xlab ( ’ St rokes r e l a t i v e to Scratch ’ )
188

189

190 ‘ ‘ ‘
191

192

193 ‘ ‘ ‘{ r , f i g . he ight =3, f i g . width=8}
194 # Compute adjusted to−par s c o r e s
195 c o l l e g e . rated <−
196 c o l l e g e . rated %>%
197 mutate ( sg to par pro = sco r e − sg pro benchmark$pro tee [ yardage ] ,
198 sg to par s c ra t ch = sco r e − sg s c ra t ch benchmark$ sc t ee [ yardage ] ,
199 cr to par = sco r e − ( par ∗ r a t i n g / t o t a l p a r ) ) %>%
200 group by ( p laye r name , course . shor t ) %>%
201 summarise ( to par = mean( to par ) ,
202 sg to par pro = mean( sg to par pro ) ,
203 sg to par s c ra t ch = mean( sg to par s c ra t ch ) ,
204 cr to par = mean( cr to par ) ) %>%
205 ungroup ( )
206

207 # Compute standard d e v i a t i o n s o f within−p layer s c o r e s
208 c o l l e g e . rated . std <−
209 c o l l e g e . rated %>%
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210 group by ( p laye r name) %>%
211 summarise ( ‘Raw Score ‘ = s q r t ( var ( to par ) ) ,
212 ‘SG Pro ‘ = s q r t ( var ( sg to par pro ) ) ,
213 ‘SG Scratch ‘ = s q r t ( var ( sg to par s c ra t ch ) ) ,
214 ‘ Course Rating ‘ = s q r t ( var ( cr to par ) ) ) %>%
215 r e p l a c e na ( l i s t ( rep (0 , 4 ) ) )
216

217 mean( c o l l e g e . rated . std $ ‘Raw Score ‘ )
218 mean( c o l l e g e . rated . std $ ‘ Course Rating ‘ )
219 mean( c o l l e g e . rated . std $ ‘SG Scratch ‘ )
220

221 # Kolmogorov smirnov t e s t s
222 ks . t e s t ( c o l l e g e . rated . std $ ‘Raw Score ‘ , c o l l e g e . rated . std $ ‘ Course Rating ‘ )
223 ks . t e s t ( c o l l e g e . rated . std $ ‘Raw Score ‘ , c o l l e g e . rated . std $ ‘SG Scratch ‘ )
224

225 # Plot standard dev i a t i on d i s t r i b u t i o n s
226 c o l l e g e . rated . std %>%
227 pivot l onge r ( c ( ‘Raw Score ‘ , ‘SG Scratch ‘ , ‘ Course Rating ‘ ) ,
228 names to = ’ Score ’ ,
229 va lue s to = ’ Standard Deviat ion ’ ) %>%
230 ggp lot ( aes ( ‘ Standard Deviat ion ‘ , group = ‘ Score ‘ , f i l l = ‘ Score ‘ ) ) +
231 geom dens i ty ( alpha =0.5) +
232 #xlim ( 0 . 4 , 1 . 7 ) +
233 xlab ( ’ Player Score Standard Deviat ion ’ )
234

235 # Plot d i f f e r e n c e due to adjustment
236 c o l l e g e . rated . std %>%
237 mutate ( ‘SG Pro ‘ = ‘SG Pro ‘ − ‘Raw Score ‘ ,
238 ‘SG Scratch ‘ = ‘SG Scratch ‘ − ‘Raw Score ‘ ,
239 ‘ Course Rating ‘ = ‘ Course Rating ‘ − ‘Raw Score ‘ ) %>%
240 pivot l onge r ( c ( ‘SG Scratch ‘ , ‘ Course Rating ‘ ) , #, ‘SG Pro ‘ ) ,
241 names to = ’ Score ’ ,
242 va lue s to = ’ Change in Standard Deviat ion ’ ) %>%
243 ggp lot ( aes ( ‘ Change in Standard Deviat ion ‘ , group = ‘ Score ‘ , f i l l = ‘ Score

‘ ) ) +
244 geom boxplot ( alpha =0.5) +
245 geom v l i n e ( x i n t e r c e p t = 0 , l i n e t y p e = ’ dotted ’ ) +
246 l ab s ( x=expr e s s i on ( paste ( ’ D i s t r i b u t i o n o f Change in Player Score Standard

Deviat ion ’ , Delta ) ) )
247

248 ‘ ‘ ‘
249

250

251 ‘ ‘ ‘{ r }
252 # Plot mean p laye r s co r e d i s t r i b u t i o n
253 c o l l e g e . rated %>%
254 group by ( p laye r name) %>%
255 summarise ( ‘Raw Score ‘ = mean( to par ) ,
256 ‘SG Pro ‘ = mean( sg to par pro ) ,
257 ‘SG Scratch ‘ = mean( sg to par s c ra t ch ) ,
258 ‘ Course Rating ‘ = mean( cr to par ) ) %>%
259 pivot l onge r ( c ( ‘Raw Score ‘ , ‘SG Scratch ‘ , ‘ Course Rating ‘ ) ,
260 names to = ’ Score ’ ,
261 va lue s to = ’Mean ’ ) %>%
262 ggp lot ( aes ( ‘Mean ‘ , group = ‘ Score ‘ , f i l l = ‘ Score ‘ ) ) +
263 geom dens i ty ( alpha =0.5) +
264 xlim (NA, 2) +
265 xlab ( ’ Player Mean Score ’ )

71



Chapter 8. Appendices

266 ‘ ‘ ‘
267

268 # Average s co r e on a course
269 ‘ ‘ ‘{ r }
270 c o l l e g e . rated %>%
271 group by ( course . shor t ) %>%
272 summarise ( ‘Raw Score ‘ = mean( to par ) ,
273 ‘SG Scratch ‘ = mean( sg to par s c ra t ch ) ,
274 ‘ Course Rating ‘ = mean( cr to par ) ) %>%
275 pivot l onge r ( c ( ‘Raw Score ‘ , ‘SG Scratch ‘ , ‘ Course Rating ‘ ) ,
276 names to = ’ Score ’ ,
277 va lue s to = ’Mean ’ ) %>%
278 ggp lot ( aes ( ‘Mean ‘ , group = ‘ Score ‘ , f i l l = ‘ Score ‘ ) ) +
279 geom dens i ty ( alpha =0.5) +
280 xlab ( ’ Course Mean Score ’ )
281

282 ‘ ‘ ‘

src/course rating.rmd

1 #
########################################################################################

2 # This f i l e uses the f i l e conta in ing the generated l i s t o f course i d s to
r e t r i e v e #

3 # the t a b l e o f course r a t i n g s f o r males and female s and save them a l l i n to
one datase t #

4 #
########################################################################################

5

6 l i b r a r y (pacman)
7 p load ( rvest , t i d y v e r s e )
8

9 baseURL <− ’ ht tps : //ncrdb . usga . org / courseTeeIn fo . aspx ?CourseID=’
10

11 # Fi l epath to read input from course IDs .R
12 course i d s . fpath <− ’ . . / data / course r a t i n g / course i d s . csv ’
13

14 # Function that r e t r i e v e s the course r a t i n g from the s t a t i c webpage , g iven
the course ID

15 getCourseRating <− f unc t i on ( id ) {
16

17 ##############
18 # Input :
19 # − id : the course id
20 #
21 # Returns :
22 # The male and female course r a t i n g
23 ##############
24

25 # Extract the t a b l e from the webpage
26 t <− read html ( paste0 (baseURL , id ) ) %>%
27 html nodes ( xpath=’ // t a b l e [ @id=”gvTee ” ] ’ ) %>%
28 html t a b l e ( )
29

30 # I f no t a b l e was found , re turn NULL
31 i f ( l ength ( t ) == 0) re turn (NULL)
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32

33 # F i l t e r the t a b l e to only inc lude the rows with h i ghe s t course r a t i n g
f o r men and women

34 t <− t %>% as . data . frame ( ) %>%
35 s e l e c t ( Gender , conta in s ( ’ Course ’ ) ) %>%
36 rename ( ’ Course Rating ’ =2) %>%
37 group by ( Gender ) %>%
38 f i l t e r ( ‘ Course Rating ‘ == max( ‘ Course Rating ‘ ) ) %>%
39 s l i c e (1 ) %>%
40 ungroup ( )
41

42 # Format in to output vec to r
43 sapply ( c ( ’M’ , ’F ’ ) ,
44 f unc t i on ( g ) f i l t e r ( t , Gender==g ) %>% p u l l ( ’ Course Rating ’ ) )
45

46 }
47

48 # Read saved course IDs from output o f course IDs .R
49 scraped . cou r s e s <− read . csv ( course i d s . fpath ,
50 c o l C l a s s e s = rep ( ’ cha rac t e r ’ , 2) )
51

52 # I n i t empty ve c t o r s
53 male <− f emale <− numeric ( nrow ( scraped . cou r s e s ) )
54

55 pb <− txtProgressBar (0 , nrow ( scraped . cour s e s ) , i n i t i a l =0)
56

57 # Loop over each course ID and r e t r i e v e the top male and female r a t i n g
58 f o r ( i in 1 : nrow ( scraped . cou r s e s ) ) {
59 i f ( i s . na ( scraped . cour s e s $ id [ i ] ) ) {
60 r a t i n g s <− c (NA, NA)
61 } e l s e {
62 # Get r a t i n g s
63 r a t i n g s <− getCourseRating ( scraped . cou r s e s $ id [ i ] )
64 # I f the re i s no r a t i n g
65 i f ( i s . n u l l ( r a t i n g s ) ) {
66 r a t i n g s <− c (NA, NA)
67 }
68 }
69

70 # Append r a t i n g s to v e c to r s
71 male [ i ] <− r a t i n g s [ 1 ]
72 f emale [ i ] <− r a t i n g s [ 2 ]
73 setTxtProgressBar (pb , i )
74 }
75 c l o s e (pb)
76

77 # Create one dataframe with cour s e s and r a t i n g s and save i t
78 rated . cour s e s <−
79 scraped . cour s e s %>%
80 mutate ( ’ Male Rating ’=as . numeric ( male ) ,
81 ’ Female Rating ’=as . numeric ( female ) )
82

83 # Write the rated cour s e s to csv
84 wr i t e . csv ( rated . courses ,
85 f i l e=course i d s . fpath ,
86 row . names = FALSE)

src/course rating scrape.R
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1 ##########################################################
2 # This f i l e reads in and p r o c e s s e s the raw scraped data #
3 ##########################################################
4 l i b r a r y (pacman)
5 p load ( data . tab le , t idyve r s e , s t r i n g r , magr i t t r )
6

7 # In and output paths f o r data
8 in data path <− ’ . . / data /Raw data by season / ’
9 out data path <− ’ . . / data / Processed data by season / ’

10

11 f i l e s <− l i s t . f i l e s ( in data path ) # Al l f i l e s in f o l d e r
12 f i r s t <− TRUE # TRUE f o r the f i r s t time the loop i s entered
13

14 f o r ( fname in f i l e s ) { # I t e r a t e over each f i l e in the f o l d e r
15 df <− paste0 ( in data path , fname ) %>% # Construct f i l e name
16 f r ead ( ) %>% # Read csv f i l e
17 s e l e c t (− S t a t i s t i c ) %>% # Drop the s t a t i s t i c column
18 mutate ( Date=as . Date ( Date ) ) %>%
19 # Group by p laye r name AND v a r i a b l e and keep only rows f o r which

the v a r i a b l e i s most r e c ent
20 group by ( ‘ Player Name‘ , Var iab le ) %>%
21 f i l t e r ( Date == max( Date ) ) %>%
22 ungroup ( )
23

24 # Convert the foot , inch measurements in to dec imals
25 f o o t i n c h <− s t r match ( df $Value , ’ (\\d+)\ ’ (\\d+)” ’ ) [ , 2 : 3 ] # Matches the

f o o t inche s pattern o f measurement
26 f o o t i n c h <− as . numeric ( f o o t i n c h [ , 1 ] ) + as . numeric ( f o o t i n c h [ , 2 ] ) /12
27

28 df %<>%
29 # Str ing formatt ing
30 mutate ( Value=s t r r e p l a c e a l l ( Value , c(# Remove commas , $ , +,

unnecessary double quote
31 ’ [ ,\\+ $ ] | ”””? ’ = ”” ,
32 ’ ˆ$ ’ = NA, # Replace empty

s t r i n g s with NA
33 ” ’ ” = ’ ’ # Remove apostrophe
34 ) ) ) %>%
35 # Replace the f o o t inch measurements with the decimal va lue s
36 mutate ( Value=i f e l s e ( i s . na ( f o o t i n c h ) , Value , f o o t i n c h ) ) %>%
37 # Spread the v a r i a b l e column over mu l t ip l e columns to make a wide

dataframe
38 pivot wider ( names from = ’ Variable ’ , va lue s from = ’ Value ’ )
39

40 # For each player , take the row with the l e a s t number o f miss ing va lue s
41 df %<>%
42 mutate (n miss ing = apply ( df , 1 , f unc t i on ( x ) sum( i s . na ( x ) ) ) ) %>%
43 group by ( ‘ Player Name ‘ ) %>%
44 f i l t e r (n miss ing == min (n miss ing ) ) %>%
45 ungroup ( ) %>%
46 s e l e c t (−n miss ing )
47

48

49 # Join proces sed f i l e s i n to one big f i l e conta in ing a l l data
50 i f ( f i r s t ) {
51 a l l data <− df
52 f i r s t <− FALSE
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53 } e l s e a l l data <− f u l l j o i n ( a l l data , df )
54

55 # Write to f i l e
56 df %>%
57 wr i t e . csv ( paste0 ( out data path , fname ) , row . names = FALSE)
58

59 gc ( r e s e t = TRUE) # garbage c o l l e c t i o n
60 }
61

62 # Write a l l data to f i l e
63 a l l data %>%
64 wr i t e . csv ( paste0 ( out data path , ’ a l l data . csv ’ ) , row . names = FALSE)

src/data aggregation.R

1 −−−
2 t i t l e : ” P r i n c i p a l Component Ana lys i s ”
3 author : ”Josh Atwal”
4 output : html document
5 date : ” ‘ r format ( Sys . time ( ) , ’%d %B, %Y, %H:%M’ ) ‘ ”
6 kn i t : ( f unc t i on ( inputF i l e , encoding ) {
7 rmarkdown : : render ( inputF i l e ,
8 encoding=encoding ,
9 output f i l e=f i l e . path ( dirname ( i n p u t F i l e ) , ’ . . ’ , ’

output ’ , ’PCA. html ’ ) ) })
10

11 −−−
12

13 ‘ ‘ ‘{ r setup , i n c lude=FALSE}
14 k n i t r : : opts chunk$ s e t ( echo = TRUE, warning = FALSE, message = FALSE)
15 l i b r a r y (pacman)
16 p load ( t idyve r s e , magr i t t r )
17

18 source ( ’ u t i l s / read data .R ’ )
19 source ( ’ u t i l s / data v i s .R ’ )
20 # Resca l e s columns to have mean 0 std 1
21 normal i s e . c o l <− f unc t i on ( x ) {
22 x <− x − mean( x )
23 x / s q r t ( var ( x ) )
24 }
25

26 ‘ ‘ ‘
27

28 ‘ ‘ ‘{ r }
29 i n c lude . sg . vars = FALSE # SET THIS TO FALSE TO DROP THE SG VARIABLES FROM

THE PCA
30 ‘ ‘ ‘
31

32 # Data input
33

34 ‘ ‘ ‘{ r }
35 # Read a f i l e from the . . / data / Processed data by season / f o l d e r , us ing the
36 # ”benchmark vars ” column s e l e c t i o n func t i on and the v a r i a b l e name

d i c t i o n a r y s p e c i f i e d .
37 # See read data .R f o r more d e t a i l s
38

39 in data path <− ’ . . / data / Processed data by season / ’
40 fname <− ’ 2019 data . csv ’
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41 j s on . f i l e p a t h <− ’ . . / data / v a r i a b l e name d i c t . j s on ’
42

43 # Read f i l e and pass i t to func t i on f o r pre p r o c e s s i n g
44 pga . df <− f r ead ( paste0 ( in data path , fname ) ) %>%
45 # Keep only p l ay e r s with l e s s than 50% miss ing va lue s ( i e the

pros )
46 f i l t e r ( rowSums( i s . na ( a c r o s s ( ! c ( ‘ Player Name‘ , Date ) ) ) ) / nco l ( . )

< 0 . 5 ) %>%
47 # S e l e c t columns o f i n t e r e s t . Can a l s o use a l l averages ( ) i f

d e s i r e d
48 benchmark vars ( j son . f i l e p a t h ) %>%
49 # And that conta in a maximum of 20% miss ing va lue s
50 s e l e c t ( where ( func t i on ( x ) mean( i s . na ( x ) ) < 0 . 2 ) ) %>%
51 # Drop ca s e s with any miss ing va lue s s t i l l remaining
52 drop na ( )
53

54 dim ( pga . df )
55 ‘ ‘ ‘
56

57 We have ‘ r nco l ( pga . df ) −1‘ v a r i a b l e s recorded f o r ‘ r nrow ( pga . df ) ‘ g o l f e r s .
58

59 # Rˆ2 a n a l y s i s
60

61 ‘ ‘ ‘{ r }
62 dim . names <− c ( ’ Dr iv ing ’ , ’ Long . game ’ , ’ Short . game ’ , ’ Putt ing ’ )
63

64

65 g o l f . f i t s <− l app ly ( dim . names , f unc t i on ( dim ) {
66 df <− pga . df %>%
67 subset by dim (dim ) %>% # Subset by g o l f i n g dimension
68 rename with ( ˜gsub ( ’SG : . ∗ ’ , ’SG ’ , . x ) ) # Rename column
69

70 # Fit l i n e a r model to t ry p r e d i c t s t r o k e s gained v a r i a b l e
71 lm(SG ˜ . , data = s e l e c t ( df , −‘ Player Name ‘ ) )
72

73 })
74

75 g o l f . f i t s %>% sapply ( func t i on ( g o l f . f i t ) summary( g o l f . f i t ) $ r . squared ) %>% ‘
names<− ‘ ( dim . names )

76

77

78 ‘ ‘ ‘
79

80 # P r i n c i p l e Component Ana lys i s
81

82 ‘ ‘ ‘{ r echo=FALSE}
83 run pca <− f unc t i on ( df ,
84 g o l f . dim = c ( ’ General ’ , ’ Dr iv ing ’ , ’ Putt ing ’ , ’ Long .

game ’ , ’ Short . game ’ ) ,
85 pre . s c a l e d=FALSE,
86 pr in t . output=FALSE) {
87

88 ##############
89 # Input :
90 # − df : the dataframe o f pga tour p laye r s t a t s
91 # − g o l f . dim : one or many o f the g o l f i n g dimensions
92 # − pre . s c a l e d : has the data been pre−s c a l e d ( no need f o r prcomp to

cente r and s c a l e the input )
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93 # − pr in t . output : whether to p r i n t d i a g n o s t i c output
94 #
95 # Returns :
96 # A l i s t with the f o l l o w i n g e lements :
97 # − pca : the raw ob j e c t returned by c a l l i n g prcomp .
98 # − N: the number o f s i g n i f i c a n t P r i n c i p a l Components
99 # − pca . summary : a summary o f the v a r i a t i o n exp la ined by each o f the PCs

100 # − var . mat : a matrix with the v a r i a b l e l oad ing s f o r each o f the PCs
101 # − pc1 . vars : the v a r i a b l e s most s t r o n g l y a s s o c i a t e d with PC1
102 # − pc2 . vars : the v a r i a b l e s most s t r o n g l y a s s o c i a t e d with PC2
103 ##############
104

105 g o l f . dim <− match . arg ( g o l f . dim , s e v e r a l . ok = TRUE)
106

107 ### Run PCA
108 df %>% s e l e c t ( where ( i s . numeric ) ) %>%
109 # Prcomp preforms the PCA. c e n t e r i n g and s c a l i n g i s done u n l e s s

manual s c a l i n g has been s p e c i f i e d
110 prcomp ( cente r = TRUE,
111 s c a l e = ! pre . s c a l e d ) −> pca
112

113 ### Calcu la te number o f u s e f u l components
114 N = which . max( pca$ sdev <= 1) − 1
115 # Always at l e a s t one PC
116 i f (N==0) N <− 1
117

118 ### Computing v a r i a b l e summary
119 comp . std <− pca$ sd [ 1 :N]
120

121 # Proport ion o f t o t a l var i ance accounted f o r by each component
122 var . prop <− (comp . std ˆ2) /sum( pca$ sd ˆ2)
123

124 # Cumulative proport ion o f var iance exp la ined by each component
125 cum . prop <− cumsum( var . prop )
126

127 # Summary o f the v a r i a t i o n exp la ined
128 pca . summary <− rbind (comp . std , var . prop , cum . prop )
129 row . names ( pca . summary) <− c ( ’ Standard dev i a t i on ’ , ’ Proport ion o f Variance

’ , ’ Cumulative Proport ion ’ )
130 colnames ( pca . summary) <− s p r i n t f ( ’PC%i ’ , 1 :N)
131

132

133 ### Var iab le importance
134

135 # Var iab le l oad ing s to r ed here
136 var . mat <− pca$ r o t a t i o n [ , 1 :N]
137

138

139 i f (N==1){
140 # Var iab l e s c o n t r i b u t i n g the most to PC1
141 data . frame (varName=names ( var . mat) ,
142 PC1=var . mat) %>%
143 arrange ( desc ( abs (PC1) ) ) −> pc1 . vars
144

145 } e l s e {
146 # Var iab l e s c o n t r i b u t i n g the most to PC1
147 var . mat %>%
148 as . data . frame ( ) %>%
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149 mutate (varName = row . names ( var . mat) ) %>%
150 s e l e c t (varName , PC1, PC2) %>%
151 arrange ( desc ( abs (PC1) ) ) −> pc1 . vars
152

153 # Var iab l e s c o n t r i b u t i n g the most to PC2
154 var . mat %>%
155 as . data . frame ( ) %>%
156 mutate (varName = row . names ( var . mat) ) %>%
157 s e l e c t (varName , PC1, PC2) %>%
158 arrange ( desc ( abs (PC2) ) ) −> pc2 . vars
159

160 }
161

162 i f ( p r i n t . output ) {
163 # % of v a r i a t i o n exp la ined by PC1
164 #cat ( s p r i n t f ( ’PC1 o f the %s v a r i a b l e s e x p l a i n s %.2 f%% of the v a r i a t i o n \

n ’ , g o l f . dim , 100∗pca . summary [ 2 , 1 ] ) )
165 ### S c r e e p l o t
166 p lo t ( pca$ sd ˆ2 , xlab=’ component ’ , y lab=’ var iance ’ , main=g o l f . dim )
167 a b l i n e (h=1)
168 # Var iab l e s c o n t r i b u t i n g most to PC1
169 cat ( ’Top v a r i a b l e s c o n t r i b u t i n g to PC1\n ’ )
170 i f (N>1){
171 pc1 . vars %>% as t i b b l e ( ) %>% head (5) %>% pr i n t ( )
172 }
173 }
174

175 i f (N>1){
176 l i s t ( pca=pca ,
177 N=N,
178 pca . summary=pca . summary ,
179 var . mat=var . mat ,
180 pc1 . vars=pc1 . vars ,
181 pc2 . vars=pc2 . vars )
182 } e l s e {
183 l i s t ( pca=pca ,
184 N=N,
185 pca . summary=pca . summary ,
186 var . mat=var . mat)
187 }
188 }
189

190

191 ‘ ‘ ‘
192

193 Note that accord ing to the 1−SD rule , we should only con s id e r the f i r s t N
p r i n c i p l e components which have a standard dev i a t i on > 1 f o r a
meaningful d imens i ona l i t y reduct i on . PCs with an SD l e s s than 1 exp la in
l e s s than a s i n g l e explanatory v a r i a b l e would .

194

195 ## Putting
196

197 ‘ ‘ ‘{ r }
198 # Note that documentation on the output o f the run pca func t i on i s g iven at

the bottom o f the func t i on d e f i n i t i o n
199 g o l f . dim <− ’ Putt ing ’
200 pga . df %>% subset by dim ( g o l f . dim , sg . vars = inc lude . sg . vars ) %>%
201 run pca ( g o l f . dim , p r i n t . output = TRUE) −> putt . pca
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202

203 #ggb i p l o t . func ( putt . pca )
204 ‘ ‘ ‘
205

206 ## Driving
207

208 ‘ ‘ ‘{ r }
209 g o l f . dim <− ’ Dr iv ing ’
210 pga . df %>% subset by dim ( g o l f . dim , sg . vars = inc lude . sg . vars ) %>%
211 run pca ( g o l f . dim , p r i n t . output = TRUE) −> dr ive . pca
212

213 gg b ip l o t . func ( d r iv e . pca )
214

215 ‘ ‘ ‘
216

217 ‘ ‘ ‘{ r , eva l=FALSE, echo=FALSE}
218 # Combining Driv ing and Long game in to a s i n g l e dimension
219 g o l f . dim <− c ( ’ Dr iv ing ’ , ’ Long . game ’ )
220 pga . df %>% subset by dim ( g o l f . dim , sg . vars = inc lude . sg . vars ) %>%
221 run pca ( g o l f . dim , p r i n t . output = TRUE) −> dr ive . long . pca
222

223 # Top v a r i a b l e s when combining long game and d r i v i n g
224 dr ive . long . pca$var . mat %>%
225 as . data . frame ( ) %>%
226 mutate (varName=row . names ( d r i v e . long . pca$var . mat) ) %>%
227 r e l o c a t e (varName) %>%
228 arrange ( desc ( abs (PC1) ) ) #%>%s e l e c t (−varName)
229

230 ‘ ‘ ‘
231

232 ## Long−game
233

234 ‘ ‘ ‘{ r }
235 g o l f . dim <− ’ Long . game ’
236 pga . df %>% subset by dim ( g o l f . dim , sg . vars = inc lude . sg . vars ) %>%
237 run pca ( g o l f . dim , p r i n t . output = TRUE) −> long . pca
238

239 gg b ip l o t . func ( long . pca )
240 ‘ ‘ ‘
241

242 ## Short−game
243

244 ‘ ‘ ‘{ r }
245 g o l f . dim <− ’ Short . game ’
246 pga . df %>% subset by dim ( g o l f . dim , sg . vars = inc lude . sg . vars ) %>%
247 run pca ( g o l f . dim , p r i n t . output = TRUE) −> shor t . pca
248

249 gg b ip l o t . func ( shor t . pca )
250 ‘ ‘ ‘
251

252 # Cor r e l a t i on Ana lys i s
253

254 ‘ ‘ ‘{ r echo=FALSE}
255 # Extract the PC1 columns from each o f the output o b j e c t s
256 pc . c o l s <− l i s t ( d r i v e . pca , putt . pca , shor t . pca , long . pca ) %>%
257 l app ly ( func t i on ( pc ) pc$pca$x [ , 1 : 2 ] ) %>%
258 as . data . frame ( ) %>%
259 ‘ colnames<− ‘ ( paste0 ( rep ( c ( ’ Dr iv ing ’ , ’ Putt ing ’ , ’ Short . game ’ ,
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’ Long . game ’ ) ,
260 each=2) ,
261 c ( ’ ’ , ’ 2 ’ ) ) ) %>%
262 # Negate d r i v i n g because the PCA s ign i s a r b i t r a r y
263 mutate ( Driv ing=−Driving )
264

265 # Normalise each PC v a r i a b l e to have mean 0 std . 1
266 pc . c o l s . s c a l e d <− pc . c o l s %>% apply (2 , normal i se . c o l ) %>% as . data . frame ( )
267

268 # Combine the PC columns with the shot s gained columns
269 pc . df <− pga . df %>%
270 s e l e c t ( ‘ Player Name‘ , conta in s ( ’SG ’ ) & conta in s ( c ( ’ Putt ’ , ’ Off−

the−t e e ’ , ’ Approach ’ , ’ Around the Green ’ ) ) ) %>%
271 rename with ( ˜gsub ( ’ − \\(AVERAGE) ’ , ’ ’ , . x ) ) %>% # Rename the

v a r i a b l e s
272 dplyr : : rename ( ’SG: Driv ing ’=’SG: Off−the−Tee ’ ,
273 ’SG: Short . game ’=’SG: Around the Green ’ ,
274 ’SG: Long . game ’=’SG: Approach the Green ’
275 ) %>% # Rename the v a r i a b l e s
276 # Just r e o r d e r i n g columns
277 s e l e c t ( ’ Player Name ’ , ’SG: Driv ing ’ , ’SG: Putting ’ , ’SG: Short .

game ’ , ’SG: Long . game ’ ) %>%
278 cbind ( s e l e c t ( pc . c o l s . s ca l ed , ! conta in s ( ’ 2 ’ ) ) )
279

280 # Save data to f i l e
281 saveRDS ( pc . df , ’ . . / data /pc data . rds ’ )
282

283 ‘ ‘ ‘
284

285

286 ‘ ‘ ‘{ r }
287 sg . c o l s . names <− rep ( c ( ’SG: Off−the−Tee − (AVERAGE) ’ ,
288 ’SG: Putting − (AVERAGE) ’ ,
289 ’SG: Around the Green − (AVERAGE) ’ ,
290 ’SG: Approach the Green − (AVERAGE) ’
291 ) ,
292 each=2)
293

294 p . c o r r e l a t i o n s <− sapply ( 1 : 8 , f unc t i on ( i ) {
295 cor . t e s t ( p u l l ( s e l e c t ( pga . df , sg . c o l s . names [ i ] ) ) ,
296 pc . c o l s . s c a l e d [ , i ] , method=’ pearson ’ ) $ es t imate
297 }) %>% ‘ names<− ‘ ( gsub ( ’ \\ . ’ , ’ ’ , colnames ( pc . c o l s . s c a l e d ) ) )
298

299 l e v e l . order <− c ( ’ Dr iv ing ’ , ’ Long game ’ , ’ Short game ’ , ’ Putt ing ’ )
300

301 p . c o r r e l a t i o n s %>%
302 as . data . frame ( ) %>%
303 mutate (vname = gsub ( ’ 2 ’ , ’ ’ , names (p . c o r r e l a t i o n s ) ) ,
304 PC=s p r i n t f ( ’PC%i ’ , rep ( 1 : 2 , 4) ) ) %>%
305 pivot l onge r ( c o l s = ’ . ’ , va lue s to = ’ Pearson Cor r e l a t i on ’ ) %>%
306 mutate ( l a b e l=round ( i f e l s e (PC==’PC1 ’ , ‘ Pearson Corre la t i on ‘ , NA) , 2) ) %>%
307 s e l e c t (−name) %>%
308 ggp lot ( aes ( f a c t o r (vname , l e v e l=l e v e l . order ) , ‘ Pearson Corre la t i on ‘ , f i l l =

PC, l a b e l=l a b e l ) ) +
309 geom c o l ( ) +
310 geom l a b e l ( ) +
311 theme ( a x i s . t i t l e . x = element blank ( ) ,
312 a x i s . t ex t . x = element text ( s i z e =12) ,
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313 a x i s . t i t l e . y = element text ( s i z e =14) )
314

315

316

317

318

319 ‘ ‘ ‘
320

321 # V i s u a l i s a t i o n
322

323 ## Radar Charts
324

325 ‘ ‘ ‘{ r }
326

327 f o r ( po i in c ( ’ Tiger Woods ’ , ’ Cameron Champ ’ , ’ Rory McIlroy ’ , ’ Dustin
Johnson ’ , ’ Brooks Koepka ’ , ’ Bryson DeChambeau ’ ) ) {

328 # Player P r o f i l e char t s with the SG v a r i a b l e s
329 pc . df %>%
330 s e l e c t ( ‘ Player Name‘ , conta in s ( ’SG: ’ ) ) %>%
331 rename with ( ˜gsub ( ’SG: ’ , ’ ’ , . x ) ) %>%
332 g o l f chart ( poi , t i t l e=s p r i n t f ( ’%s − SG ’ , po i ) )
333

334 # Player P r o f i l e char t s with the PC v a r i a b l e s
335 pc . df %>%
336 s e l e c t ( ‘ Player Name‘ , ! c onta in s ( ’SG: ’ ) ) %>%
337 g o l f chart ( poi , t i t l e=s p r i n t f ( ’%s − PC ’ , po i ) )
338

339 }
340

341 ‘ ‘ ‘
342

343

344 ## PC Plot s
345

346 Note the axes o f the se p l o t s have been normal i sed to have mean 0 and std . 1
347

348 ‘ ‘ ‘{ r , echo=FALSE}
349 p load ( p l o t l y )
350

351 # Big summary PCA us ing a l l v a r i a b l e s a c r o s s a l l c a t e g o r i e s
352 g o l f . dims <− c ( ’ General ’ , ’ Long . game ’ , ’ Dr iv ing ’ , ’ Putt ing ’ , ’ Short . game ’ )
353 l app ly ( g o l f . dims ,
354 f unc t i on ( dim ) {
355 df <− subset by dim ( pga . df , dim )
356 # This s c a l e s to have mean 0 and std dev . 1 , b e f o r e adding a

constant such that the matrix adds up to ( an a r b i t r a r y ) 10
357 df %>% mutate i f ( i s . numeric , f unc t i on ( x ) {
358 # Normal ises each v a r i a b l e to have mean 0 and std . 1 , b e f o r e

mu l t ip ly ing by a constant
359 # that accounts f o r the d i f f e r e n t number o f v a r i a b l e s in each

dimension
360 x <− x − mean( x )
361 x <− x / s q r t ( var ( x ) )
362 x ∗ ( nco l ( pga . df ) ) / ( nco l ( df ) −1)
363 })
364 }) %>%
365 # Join a l l the dataframes toge the r
366 Reduce ( func t i on (x , y ) f u l l j o i n (x , y , by=’ Player Name ’ ) , . ) %>%
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367 run pca ( g o l f . dims , pre . s c a l e d=TRUE, p r in t . output = FALSE) −> a l l . pca
368

369 # Extract the PC1 and PC2 o f the o v e r a l l summary PCA
370 a l l . pca . df <− a l l . pca$pca$x [ , 1 : 2 ] %>%
371 apply (2 , normal i s e . c o l ) %>%
372 as . data . frame ( ) %>%
373 mutate at ( c ( ’PC1 ’ , ’PC2 ’ ) , as . numeric )
374

375

376 # Add columns f o r PC2
377 pca . df . v i s <− pc . df %>% s e l e c t ( ’ Player Name ’ , ! c onta in s ( ’SG ’ ) ) %>%
378 cbind ( s e l e c t ( pc . co l s , conta in s ( ’ 2 ’ ) ) , a l l . pca . df )
379

380 # Plo t l y datase t
381 shared <− pca . df . v i s %>%
382 h i g h l i g h t key ( key= ˜ ‘ Player Name‘ , ” Player Name” )
383

384 ‘ ‘ ‘
385

386

387 ‘ ‘ ‘{ r , echo=FALSE}
388 # PC1 vs PC2 p l o t s . Note the Axes have been normal i sed to have mean 0 and

std . 1
389

390 g1 <− ggp lot ( shared , aes ( x=Putting2 ,
391 y=Putting ,
392 group=‘ Player Name ‘ ) ) %>% pc . p l o t . func ( ’ Putt ing ’ )
393

394 g2 <− ggp lot ( shared , aes ( x=Driving2 ,
395 y=Driving ,
396 group=‘ Player Name ‘ ) ) %>% pc . p l o t . func ( ’ Dr iv ing ’ )
397

398 g3 <− ggp lot ( shared , aes ( x=Short . game2 ,
399 y=Short . game ,
400 group=‘ Player Name ‘ ) ) %>% pc . p l o t . func ( ’ Short .

game ’ )
401

402 g4 <− ggp lot ( shared , aes ( x=Long . game2 ,
403 y=Long . game ,
404 group=‘ Player Name ‘ ) ) %>% pc . p l o t . func ( ’ Long . game

’ )
405

406

407 # Join i n d i v i d u a l p l o t s s i d e by s i d e
408 subplot ( g1 , g3 , g2 , g4 ) %>%
409 h i g h l i g h t ( on=’ p l o t l y c l i c k ’ , c o l o r=’ red ’ , opacityDim = 0 . 1 ,

s e l e c t i z e = TRUE)
410

411 # Construct the o v e r a l l summary p lo t
412 g g p l o t l y ( ggp lot ( shared ,
413 aes ( x=PC2,
414 y=PC1,
415 group=‘ Player Name ‘ ) ) + labs ( t i t l e=’ Overa l l Summary ’ ) +
416 geom point ( aes ( t ex t=s p r i n t f ( ’%s ’ , ‘ Player Name ‘ ) ) ) , t o o l t i p=c ( ’

t ex t ’ ) ) %>%
417 h i g h l i g h t ( on=’ p l o t l y c l i c k ’ , c o l o r=’ red ’ , opacityDim = 0 . 1 ,

s e l e c t i z e = TRUE)
418
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419 ‘ ‘ ‘
420

421 ## New Data
422

423 Miss ing v a r i a b l e s were s e t to columns o f z e r o s
424

425 ‘ ‘ ‘{ r , message=TRUE, echo=FALSE}
426 # Read amateur data
427 amateurs <− read . csv ( ’ . . / data /amateur data . csv ’ , check . names = FALSE)
428

429

430 # Replace miss ing va lue s with 0
431 i f (sum( i s . na ( amateurs ) ) > 0) {
432 message ( s p r i n t f ( ’%i miss ing va lue s being rep laced with 0 . . . ’ , sum( i s . na (

amateurs ) ) ) )
433 amateurs <− amateurs %>% r e p l a c e ( i s . na ( . ) , 0)
434 }
435

436 pca . l i s t <− l i s t ( d r i v e . pca , putt . pca , shor t . pca , long . pca , a l l . pca )
437 dim . names <− c ( ’ Dr iv ing ’ , ’ Putt ing ’ , ’ Short . game ’ , ’ Long . game ’ )
438

439 # Perform p r e d i c t i o n s o f PC1 and PC2 f o r the amateur data
440 pc . amateur <− l app ly ( 1 : 4 , f unc t i on ( i ) {
441 pc . vars <− amateurs %>%
442 subset by dim (dim . names [ i ] , amateur = TRUE) %>%
443 s e l e c t ( where ( i s . numeric ) ) %>%
444 p r e d i c t ( pca . l i s t [ [ i ] ] $pca , . ) # Get

p r e d i c t i o n s
445 pc . vars [ , 1 : 2 ] %>% t ( )
446

447 }) %>%
448 do . c a l l ( cbind , . ) %>% # Join columns toge the r
449 as . data . frame ( ) %>%
450 ‘ colnames<− ‘ ( c ( rbind ( dim . names , paste0 (dim . names , ’ 2 ’ ) ) ) )

%>%
451 # Negate d r i v i n g column because i t was negated f o r

p r o f e s s i o n a l s too
452 mutate ( Driv ing=−Driving )
453

454

455 # Normalise the PC columns accord ing to the same means and standard
dev i a t i on from the pro datase t

456 # Note : dont have to subt rac t mean because a l r eady comes with mean 0 , so
j u s t d i v i d i n g by var iance

457 pc . amateur <− ( pc . amateur / s q r t ( apply ( pc . co l s , 2 , var ) ) ) %>%
458 cbind ( ’ Player Name ’=amateurs$ ‘ Player Name‘ , . ) # Add

p layer name column back
459

460

461

462 # Save amateur PC p r e d i c t i o n s to f i l e a long with the SG v a r i a b l e s ( renaming
f i r s t )

463 amateurs %>% dplyr : : rename ( ’SG: Driv ing ’=’SG: Drives ’ ,
464 ’SG: Long . game ’=’SG: Approaches ( from >100

yards ) ’ ,
465 ’SG: Short . game ’=’SG: Short Game ( from <100

yards ) ’ ) %>%
466 s e l e c t ( conta in s ( ’SG: ’ ) ) %>%
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467 cbind ( pc . amateur , . ) %>%
468 saveRDS ( f i l e=’ . . / data /amateur pc .RDS ’ )
469

470 ‘ ‘ ‘
471

472 ‘ ‘ ‘{ r , echo=FALSE}
473

474 # Generate the PC1 vs PC2 p l o t s i n c l u d i n g the amateur data .
475 # S t i l l norma l i s ing the axes to have mean 0 and std . 1
476

477 pc . amateur [ 1 , 1 ] <− ’ Amateur 1 ’ # Anonymise name be f o r e p l o t t i n g
478 shared2 <− pca . df . v i s %>%
479 s e l e c t ( ’ Player Name ’ , ! c onta in s ( ’SG ’ ) & ! conta in s ( ’PC ’ ) ) %>%
480 rbind ( pc . amateur ) %>%
481 h i g h l i g h t key ( key= ˜ ‘ Player Name‘ , ” Player Name” )
482

483

484 g1 <− ggp lot ( shared2 , aes ( x=Putting2 ,
485 y=Putting ,
486 group=‘ Player Name ‘ ) ) %>% pc . p l o t . func ( ’ Putt ing ’ )
487

488

489 g2 <− ggp lot ( shared2 , aes ( x=Driving2 ,
490 y=Driving ,
491 group=‘ Player Name ‘ ) ) %>% pc . p l o t . func ( ’ Dr iv ing ’ )
492

493 g3 <− ggp lot ( shared2 , aes ( x=Short . game2 ,
494 y=Short . game ,
495 group=‘ Player Name ‘ ) ) %>% pc . p l o t . func ( ’ Short .

game ’ )
496

497 g4 <− ggp lot ( shared2 , aes ( x=Long . game2 ,
498 y=Long . game ,
499 group=‘ Player Name ‘ ) ) %>% pc . p l o t . func ( ’ Long . game

’ )
500

501

502 # I n d i v i d u a l p l o t s
503 subplot ( g1 , g3 , g2 , g4 ) %>%
504 h i g h l i g h t ( on=’ p l o t l y c l i c k ’ , c o l o r=’ red ’ , opacityDim = 0 . 1 ,

s e l e c t i z e = TRUE)
505

506

507 ‘ ‘ ‘
508

509 ## Expla in ing the PCA
510 ‘ ‘ ‘{ r , echo=FALSE}
511 pc . l i s t <− l i s t ( d r i v e . pca , putt . pca , shor t . pca , long . pca , a l l . pca )
512 dim . names <− c ( ’ Dr iv ing ’ , ’ Putt ing ’ , ’ Short . game ’ , ’ Long . game ’ , ’ A l l

Var i ab l e s ’ )
513

514 i<−4
515 pc . l i s t [ [ i ] ] $pc1 . vars %>%
516 pivot l onge r (−varName , names to = ’PC Dimension ’ , va lue s to = ’

Loading c o e f f i c i e n t ’ ) %>%
517 ggp lot ( aes ( y=reo rde r (varName , ‘ Loading c o e f f i c i e n t ‘ ) ,
518 x=‘Loading c o e f f i c i e n t ‘ ,
519 group=‘PC Dimension ‘ ,
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520 c o l =‘PC Dimension ‘ ,
521 f i l l =‘PC Dimension ‘ ) ) −> g
522

523 g g p l o t l y ( g +
524 geom c o l ( aes ( t ex t=s p r i n t f ( ’%s ’ , varName) ) ,
525 p o s i t i o n = p o s i t i o n dodge ( 0 . 5 ) ,
526 width =.75) +
527 l ab s ( y=’ ’ , t i t l e=gsub ( ’ \\ . ’ , ’ ’ , dim . names [ i ] ) ) ,
528 t o o l t i p = c ( ’ t ex t ’ , ’ Loading c o e f f i c i e n t ’ ) )
529

530

531

532

533 ‘ ‘ ‘
534

535

536

537

538 ## Plot o f with and without SG v a r i a b l e s
539 ‘ ‘ ‘{ r , echo=FALSE}
540 pc . l i s t <− l i s t ( d r i v e . pca , putt . pca , shor t . pca , long . pca , a l l . pca )
541 dim . names <− c ( ’ Dr iv ing ’ , ’ Putt ing ’ , ’ Short . game ’ , ’ Long . game ’ )
542

543

544 l e v e l . order <− c ( ’ Dr iv ing ’ , ’ Long game ’ , ’ Short game ’ , ’ Putt ing ’ )
545 # Get % of var iance exp la ined by PC1 f o r every dimension
546 pct . var . 1 <− sapply ( 1 : 4 , f unc t i on ( i ) {
547 pc . l i s t [ [ i ] ] $pca . summary [ 3 , 1 ] ∗100
548 }) %>% data . frame ( ’ Dimension ’=gsub ( ’ \\ . ’ , ’ ’ , dim . names ) ,
549 ’% o f Variance Explained ’ =. ,
550 ’SG Inc luded ’=inc lude . sg . vars ,
551 check . names = FALSE)
552

553 # Get % of var iance exp la ined by PC1 f o r every dimension but with / without
SG v a r i a b l e s depending on opt ion i s s e t

554 pct . var . 2 <− sapply ( 1 : 4 , f unc t i on ( i ) {
555

556 pca <− pga . df %>% subset by dim (dim . names [ i ] , sg . vars = ! in c lude . sg . vars )
%>%

557 run pca (dim . names [ i ] , p r i n t . output = FALSE)
558 pca$pca . summary [ 3 , 1 ] ∗100
559

560

561 }) %>% data . frame ( ’ Dimension ’=gsub ( ’ \\ . ’ , ’ ’ , dim . names ) ,
562 ’% o f Variance Explained ’ =. ,
563 ’SG Inc luded ’=! in c lude . sg . vars ,
564 check . names = FALSE
565 )
566

567

568 rbind ( pct . var . 1 , pct . var . 2 ) %>%
569 ggp lot ( aes ( f a c t o r ( Dimension , l e v e l=l e v e l . order ) , ‘% o f Variance Explained

‘ , f i l l =‘SG Included ‘ ) ) +
570 geom c o l ( p o s i t i o n = ’ dodge ’ ) +
571 theme ( a x i s . t ex t . x = element text ( s i z e =12) ,
572 a x i s . t i t l e . x = element blank ( ) ,
573 a x i s . t i t l e . y = element text ( s i z e =14) )
574
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575

576

577

578

579

580 ‘ ‘ ‘

src/PCA.Rmd
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